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Content: 

Free, Damped and Forced Vibration:  

Simple Harmonic motion (SHM), differential equation for SHM (No 

derivation), spring mass and its applications.  
Theory of damped oscillations (Derivation), Types of damping 

(Graphical Approach). Engineering applications of damped 

oscillations, Theory of forced oscillations (Qualitative), resonance 

and sharpness of resonance, Numerical problems. 

 

Introduction: 

Motion of bodies can be broadly classified into three categories: 

[1] Translational motion 

[2] Rotational motion 

[3] Vibrational / Oscillatory motion 

 

Translational motion: When the position of a 

body varies linearly with time, such a motion 

is termed as translational motion. Example: A 

car moving on a straight road, a ball moving 

on the ground.  

 

Rotational motion: When a body as a whole 

does not change its position linearly with time 

but rotates about its axis, this motion is said to 

be rotational motion.  Example: rotation of a fly 

wheel on ball bearings. 

 

Vibrational /Oscillatory motion: When a body 

executes back and forth motion which repeats over 

and again about a mean position, then the body is 

said to have Vibrational/oscillatory motion. If such 

motion repeats in regular intervals of time then it is called Periodic 
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motion or Harmonic motion and the body executing such motion is 

called Harmonic oscillator.  

 

In harmonic motion there is a linear relation between force 

acting on the body and displacement produced. Example: bob of a 

pendulum clock, motion of prongs of tuning fork, motion of balance 

wheel of a watch, the up and down motion of a mass attached to a 

spring. 

 

Note:  

1. If there is no linear relation between the force and displacement 

then the motion is called un harmonic motion. Many systems are un 

harmonic in nature. 

2. In some oscillatory systems the bodies may be at rest but the 

physical properties of the system may undergo changes in 

oscillatory manner Examples: Variation of pressure in sound 

waves, variation of electric and magnetic fields in electromagnetic 

waves. 

 

Parameters of an oscillatory system 

1. Mean position: The position of the oscillating body at rest. 

 

2. Amplitude: The amplitude of an SHM is the maximum 

displacement of the body from its mean position.  

 

3. Time Period: The time interval during which the oscillation 

repeats itself is called the time period. It is denoted by T and 

its unit in seconds. 

Displacement
Period = T= 2π 

Acceleration
 



Classical Physics for Engineers 

Mechanical Engineering Stream – (ME, AS, CH, IM) 

Unit-I-Oscillations 

R V College of Engineering  3 
 

4. Frequency: The number of oscillations that a body completes 

in one second is called the frequency of periodic motion. It is 

the reciprocal of the time period T and it is denoted by f     

Frequency f=1/T 

5. Angular frequency: This is the orbital frequency or circular 

frequency and it is measured in radians per second. It is 

denoted by ω 

ω = 2п x 1/T = 2пf 

6. Phase: It is the stateof an oscillating system. If the SHM is 

represented by y=A sin (ωt+ ), together with ω as the angular 

frequency. The quantity (ωt+ ) of the sine function is called 

the total phase of the motion at time  ‘t’ and ‘ ’ is the initial 

phase or epoch.   

 

All periodic motions are not vibratory or oscillatory. In this chapter 

we shall study the simplest vibratory motion along one dimension 

called Simple Harmonic Motion (SHM)  

 

SIMPLE HARMONIC MOTION (SHM) 

A body is said to be undergoing Simple Harmonic Motion (SHM) 

when the acceleration of the body is always proportional to its 

displacement and is directed towards its equilibrium or mean position.  

Simple harmonic motion can be broadly classified in to two types, 

namely linear simple harmonic motion and angular simple 

harmonic motion. 

 

Linear Simple Harmonic Motion: If the body executing SHM has a 

linear acceleration then the motion of the body is linear simple 

harmonic motion. 

Examples: motion of simple pendulum, the motion of a point mass 

tied with a spring etc., 
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Angular Simple Harmonic Motion: If the body executing SHM has 

an angular acceleration then the motion of the body is angular simple 

harmonic motion. 

Examples: Oscillations of a torsional pendulum 

 

Free, Damped and Forced Vibrations 
A particle or a system which executes simple harmonic motion is 

called Simple Harmonic Oscillator. Examples of simple harmonic 

motion are motion of the bob of a simple pendulum, motion of a point 

mass fastened to spring, motion of prongs of tuning fork etc., 

Free vibrations or un damped vibrations 

 

If a body oscillates without the influence of any external force, 

then the oscillations are called free oscillations or un damped 

oscillations. In free oscillations the body oscillates with its natural 

frequency and the amplitude remains constant (Fig.1) 

 

 
Figure 1: Free Vibrations 

 

In practice it is not possible, actually the amplitude of the vibrating 

body decreases to zero as a result of friction. Hence, practical 

examples for free oscillation/vibrations are those in which the friction 

in the system is negligibly small.  
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Examples of Simple harmonic oscillator 

a) Spring and Mass system 

The spring and mass system is an example for linear simple harmonic 

oscillator. 

The spring mass system consists of a block of mass m 

suspended from a rigid support by means of a mass less spring (ie a 

spring whose mass is negligible).  

 

 In a spring mass system if the suspended mass is pulled gently, 

the spring undergoes an elongation and it is said to be deformed. In 

the deformed state an internal force is developed and it is opposite to 

the external deforming force. At the equilibrium state the internal 

force and external force are equal in magnitude. When the external 

force is removed the internal force restores the mass to its initial 

position. Hence the internal force is called the restoring force. The 

restoring force produced in the spring obeys Hooke‟s Law.   

 

According to Hooke’s Law “The restoring force produced in a 

system is proportional to the displacement”. When the mass is 

displaced through a distance ‘y’ then the restoring force (F) produced 

is                                 F α y 

 

F = −ky--------- (1) 

 

The constant k is called force constant or spring constant or 

stiffness constant. It is a measure of the stiffness of the spring. The 

negative sign in equation (1) indicates that the restoring force is 

opposite to the direction of the external force or in the direction of its 

equilibrium position.  
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Figure 2: A one-dimensional simple harmonic oscillator. 

 

Note: In equilibrium condition the linear restoring force (F) in 

magnitude is equal to the weight ‘mg’ of the hanging mass. 

i.e, F = mg            mg = ky

mg
and spring constant k = (2)

y



   
 

Now, if the mass is displaced down through a distance ‘y’ from its 

equilibrium position and released then it executes oscillatory motion. 

2

2

dy
Velocity of the body = v =  and 

dt

d y
 Acceleration of the body = a =

d t

 

From Newton’s second law of motion for the block we can write  
2

2

2

2

2

2

2

2

2

2

d y
F = ma = m (3)

dt

from equation (1) substitue F= -ky in equation(3),
 

d y
-ky = m

dt

d y k

Whereωis the angular

k
or + y = 0  

 natural fr

,Substitue =ω ,      
dt m m

   
 

i.e., y=0---

equen

-- -

cy.

- --
d y

dt


        

 -(4)
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Equation (4) is the general differential equation for the free 

oscillator. The mathematical solution of the equation (4), y(t) 

represents the position as a function of time t. Let y(t) = Asin(ωt + ) 

be the solution.  

y(t) = Asin(ωt + )--------------------(5) 

 

Where A is the amplitude and (ωt + ) is called the phase,   is the 

initial phase (i.e., phase at t=0). 

 

Period of the oscillator (T) 

We have F = ma and also F = -ky. At equilibrium, magnitude of 

restoring force is equal to weight of hanging mass. i.e, ma = ky 

 

 

y

k 1
We know that ω = and ,   rewrite periodexpression

m ω

2π
Time Period T= , 

ω
        

1 1 k
frequency  f =

T m

The period of the oscillator is

Displacement y m
T = 2π =2π 2π 2π

kyAcceleration k
m

m

k

ω

2 2

a

 

 



 

 

 

b) Spring Constant in Series and Parallel combination 

Springs in Series: 

Consider two springs A and B of force constants K1 and K2 be 

connected in series and a mass m attached to the lower end of the 

bottom most spring as shown in the figure 3. When mass ‘m’ is pulled 

down a little and released. Let y be the displacement of mass ‘m’ at 

ky
Acceleration = a = 

m

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any instant of time.  Let y1 and y2 be the 

extensions of two springs of A and B 

respectively.                                                                   

Then total extension in the spring is  

y = y1 + y2 
 

In series the restoring force in each spring is 

same, so,                                                                                                          
                                                                           Figure 3: Springs in Series 

 

              

 

1 1 2 2

1 2

1 2

F=-K y =-K y

F F
displacement y =-   and    y =-

K K


1 2

1 2

eff

1 2 1 2
eff

1 2 1 2 1 2

Total  extension of the spring is y = y y

F F F
              

K K K

WhereK iseffectiveforce

So, time period of the body i

constant of the spring

1 1 1 K +K K K
,

s given

K
K K K K

 b

K K +K

 

y

eff

eff



 
    

 

    

1 2

eff 1 2

(K +K )
                        T= 2 2

K K K

m m
 
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Springs in Parallel: 

Consider two springs A and B of force constants K1 and K2 be 

connected in parallel and a mass ‘m’ is attached at the lower end as 

shown in the figure 4. Let mass ‘m’ be pulled a little and released. Let 

‘y’ be the displacement of mass ‘m’ from equilibrium position. Let F1 

and F2 be the restoring forces developed in springs A and B 

respectively.   
 

Then net restoring force is, F = F1 + F2 

              Where F1 = -K1y,    F2 =- K2y 

 

∴ Total restoring force F = (F1 + F2)  

                               -Ky = - (K1 + K2) y = Keff y 

 

 
                                                                        Figure 4: Springs in Parallel 
So, time period of the system is given by                       

                                                                                                       

                                                                                             

                                                                                                       

 

Torsion Pendulum:  

A pendulum in which the oscillations are due to the torsion (or twist) 

is a torsion pendulum. 

 

A Torsional pendulum consists of a heavy 

metal disc suspended by means of a wire 

AB of length ‘L’. The top end of the wire 

is fixed to a rigid support and the bottom 

end is fixed to the metal disc. When the 

disc is rotated in a horizontal plane so as to 

twist the wire, the various elements of the wire undergo deformation. 

The restoring couple in developed in the wire tries to bring the wire 

back to the original position. Therefore, disc executes torsional 

effWhereK iseffectiveforceconstantof spring

 eff 1 2

m m
T = 2 π = 2 π

K K + K
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oscillations about the mean position. If θ is the angle of twist in the 

wire and ‘C’ is the couple per unit twist for the wire, then the 

restoring couple = Cθ. 

 

At any instant, the deflecting couple (Iα) is equal to the restoring 

couple, (where I is the   moment of inertia of the wire about the axis 

and α is the angular acceleration). 

I α = - Cθ  ……………..(1) 

 

                                     α = - (C/I)θ…………..(2) 

 

The above relation shows that the angular acceleration is 

proportional to angular displacement and is always directed towards 

the mean position. The negative sign indicates that the restoring 

couple is in the opposite direction to the deflecting couple. Hence the 

system executes SHM Therefore; the time period of oscillator is given 

by relation. 

 

For a given wire of length l, radius r and rigidity modulus η the 

torsional constant c is given by. 

4

Torsionalconstant of the wire  
2

r
C

l


  

Damped vibrations: 

Free vibrations are vibrations in which the friction/resistance 

considered is zero or negligible. Therefore, the body will keep on 

vibrating indefinitely with respect to time. In real sense if a body set 

into vibrations, its amplitude will be continuously decreasing due to 

friction/resistance and so the vibrations will die after some time, such 
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vibrations are called damped vibrations. “The vibrations which are 

subjected to external opposing force are called damped vibrations” 

 

 

Figure 3: Damped vibrations 

Differential equation of damped vibrations and solution 

When a block of mass m suspended from a 

fixed end by means of a mass less spring in a 

viscous medium is set into vibrations the 

amplitude gradually decreases with time. As 

the mass vibrates in the liquid there will be a 

relative motion between the liquid and the 

mass and an opposing viscous force is 

developed. The viscous force which opposes 

the motion is force is proportional to the 

relative speed between the mass and the 

liquid. 

If ‘y’ is the displacement of the body from the equilibrium 

state at any instant of time‘t’, then dy/dt is the instantaneous velocity 

and d
2
y/dt

2
 is the acceleration.  

 

At any instant the two forces acting on the body are: 

i. A restoring force which is proportional to displacement and acts 

in the opposite direction, it may be written as 

Frestoring= −ky     Where k is the spring constant 

 

Vertical spring and mass system 
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ii. A frictional or damping force which is directly proportional to 

the velocity of the mass and is opposite to the motion, it may be 

written as 

damping

dy
F r

dt
     where b is the damping constant 

The net force acting on the oscillator is the summation of the two. 

restoring damping

2

2

2

2

2

2

2

2

dy
= -ky -r

dt
d y

But by Newton's law of  motion, F  = m
dt

wheremis themassof thebody  and

d y
is the accleration of the body.

dt

d y dy
Then , m =-ky-r

dtdt

d y r dy k
or + + y=0-----------(1)

m dt md

 

F= F +  F

t

 

Let
r

m
=2b and 2k

m
 , then the above equation takes the form, 

2
2

2
2 y=0

d y dy
b

dtdt
  ------------------(2) 

 

[Note : Equation 2 reduces to the differential equation for free 

oscillations if b=0] 
 

This is the differential equation of second order.  

In order to solve this equation, we assume its solution as  
αty = Ae --------------------(3) 

Where A and α are 2 arbitrary constants (variational parameters).  
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Differentiating equation (3) with respect to time t, we have 
2

αt 2 α t

2

dy d
 = Aαe and  = Aα e

d t d t

y
 

By substituting these values in equation (2), we have

 

 

2 2

2 2

2 A =0

or  

2 0

t t t

t

A e bA e e

Ae b

  



  

  

 

  

 

For the above equation to be satisfied, either y=0, or 

 2 22 0b      

Since y=0, corresponds to a trivial solution, one has to consider the 

solution  

 2 22 0b      

The standard solution of the above quadratic equation has two roots, it 

is given by,        

2 2 2

2 2

2 4 4

2

b b

b b




 

  


  

 

Therefore, the general solution of equation (2) is given by 

 

2 2 2 2( ) ( )
(4)

b b t b b t
y C e D e

      
  

 
 

Where C and D are constants, the actual solution depends upon 

whether 2 2b  ,
2 2b  or 2 2b  .  
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Case 1: Heavy damping or over damping ( 2 2b  ) 

In this case, 2 2b  is real and less than b, therefore in equation (4) 

both the exponents are negative. It means that the displacement ‘y’ of 

the particle decreases continuously with time. That is, the particle 

when once displaced returns to its equilibrium position slowly without 

performing any oscillations (Fig.8). Such a motion is called 

„overdamped’ or „aperiodic’motion.  This type of motion is shown by 

a pendulum moving in thick oil or by a deadbeat moving coil 

galvanometer.  

 
                           Figure 4: Heavy damping or overdamped motion 

 

Case 2: Critical damping (
2 2b  ) 

By substituting 2 2b  in equation (4) the solution does not satisfy 

equation (2).Hence we consider the case when 2 2b  is not zero 

but is a very small quantity β. The equation (4) then can be written as 

 

 

( ) ( )

( )

sinceβissmall,wecan approximate,

1 1 ,on thebasisof exponentialseriesexpansion

(1 ) (1 )

( ) ( ) which is theproduct of terms

b t b t

bt t t

t t

bt

bt

y C e De

y e C e De

e t and e t

y e C t D t

y e C D t C D

 

 

  

 



   

 







 

 

   

   

   

 

As ‘t’ is present in bte  and also in the term ( )t C D  , both of 

them contribute to the variation of y with respect to time. But by the 
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virtue of having t in the exponent, the term bte  predominantly 

contributes to the equation. Only for small values of t, the term 

( )t C D  contributes in a magnitude comparable to that of bte . 

Therefore, though y decreases throughout with increase of t, the 

decrement is slow in the beginning, and then decreases rapidly to 

approach the value zero. i.e., the body attains equilibrium position 

(Fig.5).  Such damping motion of a body is called critical damping. 

This type of motion is exhibited by many pointer instruments such as 

voltmeter, ammeter...etc in which the pointer moves to the correct 

position and comes to rest without any oscillation. 

 
Figure 5: Critical damping motion. 

Case 3: Low damping (
2 2b  )  

This is the actual case of damped harmonic oscillator. In this case 

2 2b  is imaginary. Let us write  

 

 

 

 

 

 

 

 

 

 

 

2 2 2 2

2 2

(-b + iβ )t (-b - iβ )t

-bt iβ t -iβ t

-bt

b -ω =i ω -b =iβ

where β = ω -b andi= -1.

Then,equation (4) becomes

y = Ce +De

y = e (Ce +De )

y = e (C(cosβ t+isinβ t)+D(cosβ t-isinβ t))

 

 





   
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This equation sin( )bty Ae t    represents displacement in 

the damped harmonic oscillations. The oscillations are not simple 

harmonic because the amplitude ( btAe ) is not constant and decreases 

with time (t). However, the decay of amplitude depends upon the 

damping factor b.  This motion is known as under damped motion 

(Fig.6). The motion of pendulum in air and the motion of ballistic coil 

galvanometer are few of the examples of this case.   

 

 
Figure 6: Under damped motion 

The time period of damped harmonic oscillator is given by 

2 2 2

2

2π 2π 2π
T= =

β ω -b k r
-

m 4m



 
The frequency of damped harmonic oscillator is given by 

2

2

1 1
n =

2 4

k r

T m m
 

 

 

 

-bt

-bt

-bt

y = e (C+D)cosβ t+i(C-D)sinβ t)

RewritingC+D=Asin and i(C-D)=Acos ,

WhereAand areconstants.

y = e Asin cosβ t+Acos sinβ t

y= Ae sin(β t+ )

 



 



 

 


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Forced Vibrations: 

In the case of damped vibrations, the amplitude of vibrations 

decreases with the time exponentially due to dissipation of energy and 

the body eventually comes to rest. When a body experiences 

vibrations due to the influence of an external driving periodic force, 

the body can continue its vibration without coming to a rest. Such 

vibrations are called forced vibrations. 

 For example: When a tuning fork is struck on a rubber pad 

and its stem is placed on a table, the table is set in vibrations with the 

frequency of the fork. These oscillations of the table are the forced 

oscillations/vibrations.  

 

 

 

 

 

 

 

 

 

“So forced vibrations can also be defined as the vibrations in 

which the body vibrates with frequency other than natural 

frequency of the body, and they are due to applied external 

periodic force”. 

 

DIFFERENTIAL EQUATION  OF FORCED VIBRATIONS AN D 

SOLUTION  

Suppose a particle of mass m is connected to a spring. When it is 

displaced and released it starts oscillating about a mean position.  The 

particle is driven by external periodic force ( sin )o dF t . The 

oscillations experiences different kinds of forces viz,   



Classical Physics for Engineers 

Mechanical Engineering Stream – (ME, AS, CH, IM) 

Unit-I-Oscillations 

R V College of Engineering  18 
 

1) A restoring force proportional to the displacement but 

oppositely directed, is given by  

Frestoring=  -ky, where k is known as force constant. 

 

2) A frictional or damping force proportional to velocity but 

oppositely directed, is given by  

    F damping = -
dy

r
dt

, where r is the frictional force/unit velocity. 

3) The applied external periodic force, it is represented 

by ( sin )o dF t , where Fo is the maximum value of the force and 

ωd is the angular frequency of the driving force.  

 

The total force acting on the particle is given by,  

net external restore damp

2

2

2

o2

F = F + F

r

+F

 

dy
= F sinω t - r  - ky

d dt

d y
By Newton's second law of motion F= m .

dt

d y dy
Hence,m =F sinω t - r  - ky

d dtdt

The differentialequation of forced vibrations

is given by

2d y dy k
+ + y=

2 m dt mdt

o

o

2 o

2
2

d

o

2

Fr k
Substitute = 2b, = ω and = f,

m m m

then equation (1) becomes

d y dy
+2b +ω y=f sinω t-

Where b is the damping constant,
            
     

----------(2)

       F is the amplitude of the exte

dtdt

F sinω t
d -----------(1)

m

d

rnal driving force 

           and ω is the angular frequencyof theexternalforce.  
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The solution for the differential equation (2) of the forced oscllations 

will be in the form  

d
y=Asin(ω t ) (3) 

 
Where, A is the amplitude of the forced vibrations.  

 
Substituting the value of A in equation (3) we get the solution of the 

differential equation of the Forced Harmonic Oscillator is  

2 2 2 2 2
sin( )

( ) 4
d

d d

f
y t

b
 

  
 

 
 -----------(4) 

The above equation gives the instantaneous displacement y of the 

oscillating system.  

                   

1

2 2

2
Phase tan (5)d

d

b


 

  
  

 
 

From the above equations it is clear that the amplitude and 

phase ϕ of the forced oscillations depend upon
2 2( )d  , i.e., these 

depend upon the driving frequency (ωd) and the natural frequency (ω) 

of the oscillator. 

 

We shall study the behavior of amplitude and phase in three different 

stages of frequencies i.e, low frequency, resonant frequency and 

high frequency. 

 

Case I:  When driving frequency is low i.e., ( )d  .  

In this case, amplitude of the vibrations is given by 

  2
d

222
d

2 4b

f
A

 

  

   ,
2 2

2 2 2 2
d d             As              and 0   04b d

2
d

2     
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m

k
 ω and 

m

F
f      

k

F

m
k

m
F

ω

f
A 200

0

2
   

 
-1 1d

2 2
d

2bω
and   tan tan (0) 0

ω ω
 

 
   
 
   

This shows that the amplitude of the vibration is independent of 

frequency of the driving force and is dependent on the magnitude of 

the driving force and the force-constant (k). In such a case the force 

and displacement are always in phase. 

 

Case II: When d   i.e., frequency of the driving force is equal to 

the natural frequency of the body. This frequency is called resonant 

frequency. In this case, amplitude of vibrations is given by 

 

2 2 2 2 2

1

2 2

1 1

( ) 4

2 ( )

2
tan

2
tan tan ( )

0 2

d d

o o

d d d

d

d

d

f
A

b

f F m F
A

b r m r

b
and

b

  

  




 

 



 


 

  

 
  

 

 
    

 

 

 

Under this situation, the amplitude of the vibrations becomes 

maximum and is inversely proportional to the damping coefficient. 

For small damping, the amplitude is large and for large damping, the 

amplitude is small. The displacement lags behind the force by a phase 

π/2.  
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Case III: When ( )d   i.e., the frequency of force is greater than 

the natural frequency of the body. In this case, amplitude of the 

vibrations is given by 

  2
d

222
d

2 4b

f
A

 

  

  422
d

2
d    ,   d 

2
d

24
d 4b large, very is  since  d  

      
m

Fm
F

ω

f
A

2

0

2

0

2
d dd 

  

 
-1 d

2 2

d

1 1

2bω
and tan

ω ω

2
tan tan ( 0)

d

b






 

 
 
 
 

 
     

 

 

 

This shows that amplitude depends on the mass and continuously 

decreases as the driving frequency ωd is increased and phase 

difference towards π. 

 

Resonance: 
If we bring a vibrating tuning 

fork near another stationary 

tuning fork of the same natural 

frequency as that of vibrating 

tuning fork, we find that both the 

tuning forks start vibrating with 

the same frequency and the 

amplitude will be maximum. 

This phenomenon is known as 

Resonance. 
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Resonance is a phenomenon in which a body vibrates with its 

natural frequency with maximum amplitude under the influence of 

an external vibration with the same frequency. 

 

Theory of resonant vibrations: 

(a) Condition of amplitude resonance. In case of forced vibrations, 

the expression for amplitude A and phase   is given by, 

2 2 2 2 2( ) 4d d

f
A

b  


 
and 

1

2 2

2
tan d

d

b


 

  
  

 
 

The amplitude expression shows the variation with the frequency of 

the driving force ωd. For a particular value of ωd, the amplitude 

becomes maximum. The phenomenon of amplitude becoming a 

maximum is known as amplitude resonance. The amplitude is 

maximum when 2 2 2 2 2( ) 4d db     is minimum. If the damping is 

small i.e., b is small, the condition of maximum amplitude reduced 

to max
2 d

f
A

b
 . 

 

(b) Sharpness of the resonance.  

We have seen that the amplitude of the forced oscillations is 

maximum when the frequency of the applied force is at resonant 

frequency. If the frequency changes from this value, the amplitude 

falls. When the fall in amplitude for a small change from the 

resonance condition is very large, the resonance is said to be sharp 

and if the fall in amplitude is small, the resonance is termed as flat. 

Thus the term sharpness of resonance can be defined as the rate of fall 

in amplitude, with respect to the change in forcing frequency on either 

side of the resonant frequency. 
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Figure 7: Effect of damping on sharpness of resonance 

 

Figure 7, shows the variation of amplitude with forcing frequency for 

different amounts of damping. Curve (1) shows the variation of 

amplitude when there is no damping i.e., b=0. In this case the 

amplitude is infinite at d  . This case is never realized in practice 

due to friction/dissipation forces, as a slight damping factor is always 

present.  Curves (2) and (3) show the variation of amplitude with 

respect to low and high damping. It can be seen that the resonant peak 

moves towards the left as the damping factor is increased. It is also 

observed that the value of amplitude, which is different for different 

values of b (damping), diminishes as the value of b increases. This 

indicates that the smaller is the damping, sharper is the resonance or 

large is the damping, flatter is the resonance. 
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SI No Sample Questions

 

 CO 

1 What is simple harmonic motion? 1 

2 Write the general equation representing SHM. 1 

3 List any two characteristics of SHM. 1 

4 A particle executes a S.H.M. of period 10 seconds and 

amplitude of 2 meter. Calculate its maximum velocity. 
3 

5 Hydrogen atom has a mass of 1.68x10
-27

 kg, when attached to 

a certain massive molecule it oscillates as a classical oscillator 

with a frequency10
14

 cycles per second and with amplitude of 

10
-10

 m. Calculate the acceleration of the oscillator. 

3 

6 A body executes S.H.M such that its velocity at the mean 

position is 4cm/s and its amplitude is 2cm. Calculate its 

angular velocity. 

3 

7 What is free vibration? 1 

8 What is damped vibration? 1 

9 Give any two examples for damped vibration. 1 

10 What is forced vibration? 1 

11 Given two vibrating bodies what is the condition for obtaining 

resonance? 
2 

12 Explain why a loaded bus is more comfortable than an empty 

bus? 
2 

13 What is a simple harmonic oscillator? 1 

14 What is torsional oscillation? 1 

15 Displacement of a particle of mass 10g executes SHM given 

by  and its displacement at t=0 is 3cm 

where the amplitude isn15cm. Calculate the initial phase of the 

particle. 

3 

16 Name the two forces acting on a system executing damped 

vibration. 
2 

17 How critical damping is beneficiary in automobiles? 1 

18 What is restoring force? 1 

19 Every SHM is periodic motion but every periodic motion need 2 
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not be SHM. Why? Support your answer with an example. 

20 Distinguish between linear and angular harmonic oscillator? 1 

21  Setup the differential equation for SHM. 2 

22 Define the terms (i) time period (ii) frequency (iii) phase and 

(iii) angular frequency of oscillations 
1 

23 What is the phase difference between (i) velocity and 

acceleration (ii) acceleration and displacement of a particle 

executing SHM? 

2 

24 Show graphically the variation of displacement, velocity and 

acceleration of a particle executing SHM. 
1 

25 Explain the oscillations of a mass attached to a horizontal 

spring. Hence deduce an expression for its time period. 
2 

26 Derive an expression for the time period of a body when it 

executes angular SHM 
1 

27 What is damping? On what factors the damping depends? 1 

28 1. What are damped vibrations? Establish the differential 

equation of motion for a damped harmonic oscillator and 

obtain an expression for displacement. Discuss the case of 

heavy damping, critical damping and low damping. 

2 

29 2. What do you mean by forced harmonic vibrations? Discuss the 

vibrations of a system executing simple harmonic motion when 

subjected to an external force. 

2 

30 3. What is driven harmonic oscillator? How does it differ from 

simple and damped harmonic oscillator? 
2 

31 4. What is resonance? Explain the sharpness of resonance. 2 

32 5. Illustrate an example to show that resonance is disastrous 

sometimes. 
2 
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SI 

No 

Numerical Problems CO 

1. A particle executes SHM of period 31.4 second and amplitude 5cm. 

Calculate its maximum velocity and maximum acceleration. 

Solution:   

The maximum velocity at y =0 in 
2 2v = ω A -y ,         vmax= A

 

max

2 2
0.2

31.4

0.2 5 1.0 / sec 0.01 /

radian
T

v cm m s

 
   

    
 

At the maximum displacement, i.e., at the extreme position x=A, 

maximum acceleration is -
2 A  

2 20.2 5 0.002 /a m s      

3 

2. A circular plate of mass 4kg and diameter 0.10 metre is suspended 

by a wire which passes through its centre. Find the period of angular 

oscillations for small displacement if the torque required per unit 

twist of the wire is 4 x 10
-3 

N-m/radian. 

Solution: 

Moment of Inertia

2 2
24(0.05)

0.005
2 2

MR
I kgm    

 

Time period is given by 

3

0.005
2 2 3.14

4 10

I
T

C x



    =7.021s. 

3 

3. A mass of 6kg stretches a spring 0.3m from its equilibrium position.  

The mass is removed and another body of mass 1kg is hanged from 

the same spring. What would be the period of motion if the spring is 

now stretched and released? 

Solution:  

F mg 6×9.8
F=ky, k= = = =196N/m and  

y y 0.3

m 1
T=2π =2×3.14 =0.45s

k 196

 

3 
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4. A vibrating system of natural frequency 500 cycles/sec, is forced to 

vibrate with a periodic force/unit mass of amplitude 100 x 10
-5

 N/kg 

in the presence of a damping/ unit mass of 0.01 x 10
-3

 rad/s. 

Calculate the maximum amplitude of vibration of the system. 

Given :Natural frequency = 500 cycles/sec, Amplitude of the force / 

unit mass , Fo/m=100 x 10
-5

 N/kg, Damping coefficient , r/m = 0.01 

x 10
-3

 rad/s 

Solution:  

Maximum amplitude of vibration 

5

3

2 ( )

100 10
0.0318 .

0.01 10 2 500

Themaximumamplitudeof vibration

 of the system is 0.0318meter

of F m
A

b r m

A m

 







 


  

   



 

3 

5. A circuit has an inductance of 1  henry and resistance 100Ω. An 

A. C. supply of 50 cycles is applied to it. Calculate the reactance and 

impedance offered by the circuit. 

Solution:  The inductive reactance is XL=ωdL =2πnL 

Here ωd=2πn=2π x 50= 100π rad/sec and L=1   Henry. 

XL=ωdL=2πnL =2π x 50x 1   =100Ω. 

The impedance is 

2 2 2 2100 100 141.4LZ R X     
 

3 

6. A series LCR circuit has L=1mH, C=0.1µF and R=10Ω.Calculate 

the resonant frequency of the circuit.  

Solution: The resonant angular frequency of the circuit is given by 

1

LC
 

 
Here  L=1mH and C=0.1µF 

5

3 7

1
10 /

10 10
rad s

x


 
 

 

3 
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Appendix: 

Example for Electrical Resonance: LCR circuit 
An L-C-R circuit fed by an alternating emf is a classic example for a forced 

harmonic oscillator. Consider an electric circuit containing an inductance L, 

capacitance C and resistance R in series as shown in the figure 8. An alternating emf 

has been applied to a circuit is represented by sino dE t .  

 
Figure 8: Series LCR circuit. 

Let q be the charge on the capacitor at any instant and I be the current in the circuit 

at any instant. The potential difference across the capacitor is
q

C
, the back emf due 

to self inductance in the inductor is 
dI

L
dt

 and, the potential drop across the resistor 

is IR. The sum of voltages across the three LCR elements illustrated must be equal 

the voltage supplied by the source element. Hence the voltage equation at any 

instant is given by, 

 L R C S

o d

V +V +V = V (t)

dI q
L +IR+ = E sinω t

dt C
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2

d o2

2

d o d2

2
d o

d2

2
d o

d2

Differentiating,weget

d I dI 1 dq
L +R + = ω E cos

dt C dtdt

dq d I dI I
but = I, L +R + = ω E cosω t

dt dt Cdt

d I R dI 1 ω E
+ + I= cosω t

L dt LC Ldt

d I R dI 1 ω E π
+ + I= sin ω t+ (

L dt LC L 2dt

dt



     
     
     

       
          

       
1)

 

 

This is the differential equation of the forced oscillations in the electrical circuit. It 

is similar to equation of motion of a mechanical oscillator driven by an external 

force. 

oF

m

2
d y dy 2

+2b +ω y= sinω td2
dtdt

--------------------------(2) 

 

The explicit and precise connection with the mechanical oscillation equation is 

given below: 
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Forced oscillations  

(refer previous section) 

LCR Circuit application 

Starting with equation from 

forced vibrations, we have 

 

oF
 

m

2
d y dy 2

+ 2b + ω y = sinω td2
dtdt

 

 

Amplitude of mechanical 

vibrations is given by 

 

2 2 2 2 2( ) 4

o

d d

F m
A

b  


   

 

The equivalent equation for LCR circuit is 

given by 

 

2
d o

d2

d I R dI 1 ω E π
+ + I= sin ω t+

L dt LC L 2dt

       
       
       

 

Amplitude of current Io is given by 

0
2 2 2 2 2

2

2
2

2

2 2
2 2

2

( ) 4

1
Substitute for

and 4 ,weget

1

d
o

d d

d
o

o

d d

E
LI

b

LC
R

b
L

E
LI

R

LC L



  





 



 







 
  

 

 

 

2

2
2

2 2

2

22 2
2

2 2

In thedenominator,multiply and divde 

1
the  term by and ,we get

LC

1

1

d d

d
o

o

d
d d

d

d
o

o

d
d d

d

by L

E
LI

L R

LC L L

E
LI

R
L

CL L

 




 






 





    
           



  
   

     
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The solution of the equation (1) for the current at any instant in the circuit is of the 

form    

2

2

sin( ) sin( ) (3)

1

o
d o d

d

d

E
I t I t

R L
C

   




    

 
  
 

 

 

Electrical Impedance: The ratio of amplitudes of alternating emf and current in ac 

circuit is called the electrical impedance of the circuit.
o o

o

o

E E
. ., Z = I

I Z
i e    

The amplitude of the current is o o
o

2

2

E E
I = =

Z
1

R + ω L-
ω C

d

d

 
 
 

 

Impedance of the circuit Z =

2

2 1
R + ω L- (4).

ω C
d

d

 
  

 
 

 

 

2

2

C

d

d L

2 2

2 2

1

1
substitute = X (Capacitive reactance)

Cω

and Lω =X (Inductive reactance)

d
o

o

d
d

d

o
o

C L

o

L C

E
LI

L R
L C

E
I

X X R

E

X X R










 
  

 
 



 


   
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The quantity
1

ω L-
ω C

d

d

 
 
 

is the net reactance of the circuit which is the 

difference between the inductive reactance L(X )=ω Ld and the capacitive 

reactance C

1
(X )=

ω C.d

.Equation (3) shows that the current I lags in phase with the 

applied emf sino dE t by an angle   and is given by 

1 1

1

tan tan
d

d L C

L
C X X

R R




  

 
   

    
  

 
 

 

 

The following three cases arise: 

1. When XL>XC , is positive, that is, the current lags behind the emf. Circuit 

is inductive. 

2. When XL<XC , is negative, that is, the current leads behind the emf. 

Circuit is capacitive. 

3. When XL=XC , is zero, that is, the current is in phase with the emf. Circuit 

is resistive. 

 

Electrical Resonance: According to equation (4), the current have its maximum 

amplitude when 

1 1 1
0 0L C d d d

d d

X X or L or L or
C C LC

  
 

     

 

Where ωd is the angular frequency of the applied emf, while ω =
1

LC
 is the 

(angular) natural frequency of the circuit. 

Hence, the maximum amplitude of the current oscillations occurs when the 

frequency of the applied emf is exactly equal to the natural (un-damped) frequency 

of the electrical circuit. This is the condition of electrical resonance. 
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Sharpness of resonance and Bandwidth: 

When an alternating emf is applied to an LCR circuit, electrical oscillations occur in 

the circuit with the frequency ωdis equal to the applied emf. The amplitude of these 

oscillations (current amplitude) in the circuit is given by  

2

2

= ,  Where is theimpedanceof thecircuit.

1

o o
o

d

d

E E
I Z

Z

R L
C






 
  
   

At resonance, when the frequency ωd of the applied emf is equal to the natural 

frequency 
1

LC
   of the circuit, the current amplitude Io is maximum and is 

equal to Eo/R. Thus at resonance the impedance Z of the circuit is R. At other values 

of ωd, the current amplitude Io is smaller and the impedance Z is larger than R.  

 

 

 

 

 

 

 

 

 

Figure 9: Graphical plot of current vs frequency. 

The variation of the current amplitude Io with respect to applied emf frequency ωd is 

shown in the figure 9. Io attains maximum value (Eo/R) when ωd has resonant value 

ω and decreases as ωd changes from ω. The rapidity with which the current falls 

from its resonant value (Eo/R) with change in applied frequency is known as the 

sharpness of resonance. It is measured by the ratio of the resonant frequency ωto 

the difference of two frequencies ω1 and ω2taken at 
1

2
of the resonant (ω) value.  

i.e.,               Sharpness of resonance (Q)  =

2 1



 
, 

ω1 and ω2 are known as the half power frequencies. 

The difference of half power frequencies, ω1 - ω2 is known as “band-width”. The 

smaller is the bandwidth, the sharper is the resonance. 

I0 

ω1        ω       ω2 

ω2 

2

Io  


