
UNIT- III: ELECTRICAL PROPERTIES OF 

METALS AND SEMICONDUCTORS 
 

Introduction: 

Conducting materials play a vital role in Engineering.  It is very 

essential to know the electrical properties of materials for specific 

application of the materials.  The properties of metals such as 

electrical conduction, thermal conduction, specific heat etc., are due 

to the free electrons or conduction electrons in metals.  The first 

theory to explain the electrical conductivity of metals is Classical 

free electron theory and it was proposed by Drude in the year1900 

and later developed and refined by Lorentz.  Hence classical free 

electron theory is known as Drude-Lorentz theory. 

 

Assumptions of Classical Free Electron Theory: 

1. A metal is imagined as a three dimensional ordered network of 

positive ions with the outermost electrons of the metallic atoms 

freely moving about the solid. The electric current in a metal, due 

to an applied field, is a consequence of drift velocity of the free 

electrons in a direction opposite to the direction of the field. 

2. The free electrons are treated as equivalent to gas molecules and 

thus assumed to obey the laws of kinetic theory of gases. As per 

kinetic theory of gases, in the absence of the field the energy 

associated with each electron at a temperature T is  
3

2
kT , where 

k is Boltzmann constant. It is related to the kinetic energy 

through the relation 

23 1

2 2
thkT mv  

  Wherevth is the thermal velocity of the electrons.  

3. The electric potential due to the ionic core (lattice) is taken to be 

essentially constant throughout the metal. 

4. The attraction between the free electrons and the lattice ions and 

the repulsion between the electrons are considered insignificant. 
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Drift Velocity 

Initially the electrons in the metal which are in thermal equilibrium 

will move in random directions and often collide with ions with no 

net displacement. When electric field is applied, the equilibrium 

condition is disturbed and there will be net displacement in randomly 

moving free electron‟s positions, with time in a direction opposite to 

the direction of the field. This displacement per unit time is called 

drift velocity which will be constant for the free electrons in the 

steady state. This accounts for the current in the direction of the 

field. 

 

 
If „E‟ is the electric field applied to the metal, „ ’ is mean collision 

time, then drift velocity for conduction electron in a metal is given 

by 

d

eE
v

m
  

Where „e‟ and „m‟ are charge and mass of electron respectively. 

 

Current density (J): 

It is the current per unit area of cross section of an imaginary plane 

held normal to the direction of current in a current carrying 

conductor.  

  i.e. J = I/A where A is the area of cross section. 
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Electric Field (E): 

Electric field across homogeneous conductor is defined as the 

potential drop per unit length of the conductor. 

If „L‟ is the length of a conductor of uniform cross section and 

uniform material composition and „V‟ is the potential difference 

between its two ends, then electric field „E‟ is given by 

    E = V/L 

 

Mean Free Path ( ): 

It is the average distance travelled by the conduction electrons 

between successive collisions with lattice ions. 

 

Mean Collision Time ( ): 

It is the average time that elapses between two consecutive collisions 

of an electron with the lattice ions. 

 

Relation between v,  and  : 

If „v‟ is the total velocity of the electrons, then the mean collision 

time „ ’ is given by 

v


   

Resistivity (  ): 

For a material of uniform cross section, the resistance „R‟ is directly 

proportional to length „L‟ and inversely proportional to area of cross 

section „A‟ 

i.e.     
L L

R R
A A

 
 

   
 

 

Where „  ‟ is called resistivity. It is the property of the material and 

gives the measure of opposition offered by the material during the 

current flow in it. 
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RA

L
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Conductivity ( ): 

It is reciprocal of resistivity. It is a physical property that 

characterizes conducting ability of a material. 
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
   

Relation between J,   and E: 

From ohms law  
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    EJ   

   

Expression for electric current in a conductor: (I) 

dI nev A  

n - Number of free electrons in unit volume of the 

conductor  

dv - Drift velocity of electrons 

A - Area of cross section of the conductor 

e – Charge of an electron 

 

Expression for Conductivity: 

The current through the conductor is given by 

 
We know that drift velocity (vd) is given by 
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Substituting for vd in the above equation 

 

)   where „L‟ is the length of the conductor 

 

Rearranging the terms of the above equation 

 

) 

               

Therefore σ =  

Mobility of electrons: 

Mobility of electrons (  ) is defined as the magnitude of drift 

velocity acquired by the electron in unit field. 

i.e. 
1dv eE eE

E E m m




 
   

 
 

 

Failures of classical free electron theory: 

Although electrical and thermal conductivity in metals can be 

explained successfully through classical free electron theory, it failed 

to account for many other experimental facts such as specific heat, 

temperature dependence of conductivity and dependence of electrical 

conductivity on electron concentration. 
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1. The molar specific heat of a gas at constant volume is RCv
2

3
 , 

where R is a universal constant.  But the experimental value of 

electronic specific heat is Cv=10
-4

RT which the classical theory 

could not explain.  Also the experimental value shows that the 

electronic specific heat is temperature dependent, whereas the 

classical free electron theory says that it is temperature 

independent. 

2. The electrical conductivity of a metal is inversely proportional 

to temperature.  According to classical free electron theory, 

electrical conductivity is inversely proportional to the square 

root of temperature, i.e. 
T

1
 .  

3. Electrical conductivity is given as 
m

ne2
  

According to classical electron theory electrical conductivity is 

directly proportional to the electron concentration. But 

monovalent metals like copper found to have high electrical 

conductivity than the divalent & trivalent metals like Zinc and 

Aluminium. Hence CFET fails to explain the observation. 

4. Though metals are expected to exhibit negative Hall co-efficient 

since the charge carriers in them are electrons, some metals like 

zinc have positive Hall co-efficient. The free electron theory 

could not explain the positive Hall co-efficient of metals. 

Assumptions of quantum free electron theory: 

The main assumptions of quantum free electron theory are 

1. The energy values of free electrons are quantized. The allowed 

energy values are realized in terms of a set of energy levels.  

2. The distribution of electrons in the various allowed energy 

levels, follows Pauli‟s Exclusion Principle. 
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3. Distribution of electrons in energy states obey  Fermi-Dirac 

statistics. 

4. The free electrons travel in a constant potential inside the metal 

but stay confined within its boundaries. 

5. The attraction between the free electrons and lattice ions, the 

repulsion between the electrons themselves are ignored. 

 

Fermi level and Fermi energy: 

If we assume the number of electrons per unit volume as ne then 

these electrons should be accommodated in the various energy 

levels. At absolute zero temperature, the electrons occupy the lowest 

available energy levels. The highest occupied level in metals at zero 

Kelvin is called as the Fermi level and the corresponding energy 

value of that level is called as the Fermi energy, it is denoted by EF. 

Thus at 0K all levels up to the Fermi level are occupied while the 

levels above it are vacant. 

 
The dotted level is the Fermi level. Levels from Eo up to EF are 

occupied while levels above EF are empty. 

 

Fermi-Dirac statistics: 

Under thermal equilibrium the free electrons are distributed in 

various available energy states. The distribution of electrons among 

the energy levels follows statistical rule known as Fermi-Dirac 

statistics.  

EF 

E0 
Energy band 
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Fermi-Dirac statistics is applicable to fermions. Fermions are 

indistinguishable particles with half integral spin. Since electron has 

half spin they obey Fermi-Dirac statistics and they are called 

Fermions.  

Fermi factor represents the probability that a quantum state 

with energy E is occupied by an electron, is given by Fermi-Dirac 

distribution function,  








 




kT

EE
Ef

Fexp1

1
)(  

 

Where k is the Boltzmann‟s constant, T is the temperature in Kelvin, 

E is the energy and EF is the Fermi energy. 

 

Dependence of Fermi factor on temperature: 

The dependence of Fermi factor on temperature at T=0K is given in 

the figure. 
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Case 1: the probability of occupation for E < EF at T = 0K 

Substituting the value of T = 0K in the Fermi function we get 

 
  1

1 1 1
1

1 0 1FE E
kT

f E
e

e



   

 
 

f(E)=1 implies that all the levels below EF are occupied by electrons. 

 

Case 2:  the probability of occupation for E>EF at T = 0K. 

Substituting the value of T = 0K in the Fermi function, we get 

 
  1

1 1 1
0

1FE E
kT

f E
e

e



   

 
.  

This shows that all energy levels above EF are vacant.  

 

Case 3: probability of occupation at temperature > 0K 

 
1. At ordinary temperatures, though the value of probability is 1 

for E<< EF, it starts decreasing from 1 as the values of E become 

closer to EF. 

2. The value of  f(E) become ½ at E=EF. This is because at E = EF 

 
  0

1

1 1 1 1

1 1 1 2FE E
kT

f E
e

e



   

 
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3. For values just beyond EF, f(E)>0 

4. Further above E > EF, the probability value falls off to zero 

rapidly. 

 

It implies that the probability of occupancy of Fermi level at any 

temperature other than 0K is 0.5 

 

Hence Fermi level is defined as the energy level at which the 

probability of electron occupancy is half.  Also, Fermi energy, EF is 

the average energy possessed by the electrons which participate in 

conduction process in conductors at temperatures above 0K. 

 

Density of states g (E): 

The permitted energy levels for electrons in a solid will be in terms 

of bands. Each energy band spread over an energy range of few eV. 

The number of energy levels in each band will be extremely large 

and hence the energy values appear to be virtually continuous over 

the band spread. Each energy level consists of two states and each 

state accommodates only one electron.  Therefore, energy level can 

be occupied by two electrons only, having opposite directions of 

spin. The exact dependence of density of energy states on the energy 

is realized through a function denoted as g (E) and is known as 

density of states function.  

It is defined as, the number of available states per unit volume per 

unit energy interval. 

 

The number of states lying in the range of energies between E and 

E+dE is given by 

dEEm
h

dEEg 2/12/3

3
)2(

4
)(


 .  

Where E is the kinetic energy of the electron in the energy level E. 
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Carrier concentration in metals and Fermi energy at 0K 

Number of free electrons /unit volume which possess energy in the 

range E and E+dE is given by   N (E) dE = g(E)×dE× f(E) 

The number of free electrons/unit volume of the material, i.e., n is 

equal to the total number of electrons that are distributed in various 

energy levels upto EF.  Thus we have 





FE

E

dEENn
0

)(            



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E

dEEfEgn
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But, f (E) =1, at T= 0K  
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 g(E) dE is given by,  dEEm
h
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This is the equation of concentration of electrons in a metal at 0K. 

Expression for the Fermi energy at 0K is given by 3/2
2

)
3

(
8 

n

m

h
EF   

       
3/2BnEF   

 Where B= 3/2
2

)
3

)(
8

(
m

h
is a constant=5.85x10

-38
J. 
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Success of Quantum Free Electron theory 

1. The theory could successfully explain the specific heat 

capacity of metals. 

2. It could also explain temperature dependence of electrical 

conductivity. 

3. It explained the dependence of electrical conductivity on 

electron concentration. 

4. It also explained photoelectric effect, Compton effect, Black 

body radiation, Zeeman effectetc., 

 

HALL EFFECT: 

When a transverse magnetic field „B‟ is applied perpendicular to 

current carrying conductor, a potential difference is developed across 

the specimen in a direction perpendicular to both current and the 

magnetic field. This phenomenon is called the Hall effect. The 

Voltage so developed is called Hall voltage. 

 

 Hall effect helps to i) determine the sign of charge carrier in 

the material 2) determine the charge carrier concentration and iii) 

determine the mobility of charge carrier, if conductivity of material 

is known. Hall effect measurement showed that the negative charge 

carriers, that is the electrons are responsible for conduction in metal 

and it also showed that there exists two types of charge carriers in a 

semiconductor. 

 

To explain Hall Effect in metals (conductor), consider a rectangular 

plate of a metal having, width w and thickness t.When potential 

difference is applied across its ends, a current „I‟ flows through it 

along x direction that is opposite to the direction of flow of electrons. 

The current passing through the metal is given by 

   I = nAevd  (1) 
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where n- concentration of electrons 

A- Area of cross section of end face 

e- charge on the electron 

vd- drift velocity of electron 

n – concentration of electrons 

Therefore    vd=I/nAe     = I/nwte                  (2) 

where  A=wt  (w is the width of the sample and t is the thickness of 

the sample) 

   

Any plane perpendicular to current flow direction is an equipotential 

surface. Therefore potential difference between front and rare faces 

is zero. If magnetic field is applied normal to crystal surface and also 

to the current flow, a transverse potential difference is produced 

between the faces F & F
/. 

It is called Hall voltage VH. 

In the absence of magnetic field B, the charge carriers move in a 

direction parallel to faces F & F
/
. On the application of magnetic 

field B, the Lorentz force comes into existence and this force deflects 

the electrons sideways. The magnitude of this force is given by 

   FL = e B vd 

 

            
Fig. Hall effect in conductors 
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Fig. Direction of magnetic force and Hall field in a conductor 

 

In the absence of magnetic field B, the charge carriers move in a 

direction parallel to faces F & F
/
  as shown in the above figure. On 

the application of magnetic field B, the Lorentz force comes into 

existence and this force deflects the electrons sideways due to the 

magnetic force FL. The magnitude of this force is given by 

   FL = e B vd 

Because of this force, electrons will move towards the front face F 

and pile up there. Initially the material is electrically neutral 

everywhere. However, as electrons pile up on the front side, a 

corresponding equivalent positive charge is left on the rare face F
/
. 

As a result an electric field is produced across F & F
/
. The direction 

of electric field (EH) will be from rare face to front face. A condition 

of equilibrium is reached when force (FH) due to transverse electric 

field EH, balances the Lorentz force (FL). The transverse electric field 

EH is known as Hall field. 

 At equilibrium condition 

    FL = FH                                   (3) 

    FH = e EH = e (VH/w)            (4) 

Substituting for FL and FH in eqn (3) we get 

    eBvd = eVH/w            (5) 
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  Substituting for vd   from equation (2) in equation   (5) 

      (6) 

 

  Hall voltage   VH= (7) 

 

Reciprocal of Carrier charge density is called Hall co-efficient RH 

RH= 1/ne 

Equation  (6) can be written as       

                                            RH =   

The Hall voltage can be measured with a voltmeter with the direction 

of magnetic field & current depicted in fig, the sign of Hall voltage is 

negative. 

 

The charge carrier concentration is given by       

H

1
n

R e H

BI

V te
   

 
 

BAND THEORY OF SOLIDS: 

The energy band structure of a solid determines whether it is a 

conductor, an insulator, or a semiconductor 

The electron of an isolated atom has certain definite energies such as 

1s, 2s, 3p, 3s, etc.  Between two consecutive allowed values of 

energy there is forbidden gap.  As we bring together large number of 

identical atoms to form a solid, significant changes take place in the 

energy levels. The energy levels of each atom will interact with the 

other identical atoms. The wave functions of each atom will overlap 

and as a result the energy levels of each atom overlap slightly and 
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split into a number of levels corresponding to the number of atoms.  

The split energy levels are very close to each other and they form a 

narrow band known as energy band. 

 

The range of energies possessed by electrons in a solid is known as 

energy band. 

 

The energy band formed by the energy levels of the valence 

electrons is called valence band.  The energy band immediately 

above the valence band where the conduction electrons are present is 

called conduction band. 

 

The separation between the upper level of valence band and the 

bottom level of conduction band is known as forbidden energy gap, 

Eg. 

 

The forbidden energy gap is a measure of the bondage of valence 

electrons to the atom.  The greater the energy gap more tightly 

valence electrons are bound. When energy is supplied, electrons 

from the valence band jump to the conduction band and thereby the 

material starts conducting. 

 

SEMICONDUCTORS 

Pure semiconductors are the materials having electrical conductivity 

greater than that of insulators but significantly lower than that of a 

conductor at room temperature. They have conductivity in the range 

of 10
-4

to 10
4
 S/m. The interesting feature about semiconductors is 

that they are bipolar and current is transported by two types of 

charge carriers of opposite sign namely electrons and holes. The 

number of carriers can be drastically enhanced by doping the 

semiconductor with suitable impurities. The doped semiconductor 
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which exhibits higher conductivity is called an extrinsic 

semiconductor. The conductivity of an extrinsic semiconductor 

depends on the doping level which is amenable to control. The 

current transportation in extrinsic semiconductor occurs through two 

different processes namely drift and diffusion. Pure semiconductors 

are of relatively less importance whereas extrinsic semiconductors 

are widely used in fabricating devices. These devices are more 

generally known as solid-state electronic devices. 

 

INTRINSIC SEMICONDUCTORS 

A semiconductor in an extremely pure form is known as an 

intrinsic semiconductor. 

Intrinsic carriers in pure semiconductors 

At room temperature in pure semiconductors, a single event 

of breaking of bonds leads to two carriers; namely electron and hole. 

The electron and hole are created as a pair & the phenomenon is 

called electron-hole pair generation. At any temperature T the 

number of electrons generated will be equal to the number of holes 

generated. If „n‟ denotes number density of electrons in the 

conduction band & „p” denotes the number of holes in the „valence 

band then   n = p = ni   where,  „ni‟ is called intrinsic concentration or 

the intrinsic density 

After the generation, the carriers move independently; the electrons 

move in the conduction band & the holes move in the valence band. 

The motion of these two carriers is random in their respective band 

as long as no external field is applied. 

 

Concept of Effective Mass of the Electron and Holes: 

 

Consider an isolated electron of mass m and charge –e in an electric 

field of strength E.  The electric force acting on it is –eE.  The 
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electron gets accelerated, then -eE = ma.  However, an electron 

within a crystal is in a periodic potential due to positive ion cores.  

The neighbouring ions and electrons in the crystal do exert some 

force on the electron in a crystal.  Then ma= -eEplus force due to 

neighbouring ions and electrons.  Since the latter force is not known 

quantitatively, we can write the above equation as me*a= -eE or 

me*= -eE/a where me* is called the effective mass of the electron 

within the crystal.  Thus it is inferred that the effective mass of an 

electron depends on its location in the energy band.  Electrons near 

the bottom of the conduction band have an effective mass which is 

almost equal to the effective mass of a free electron.  Electrons near 

the bottom of the valence band have negative effective mass.  The 

removal of an electron with a negative effective mass is identical to 

creating a particle of positive mass.  Thus hole is given the status of 

particle with positive effective mass mh
*
. 

 

Carrier concentration in intrinsic semiconductor 

The actual number of electron in the conduction band is given by 
 of the band

( ) ( )

c

top

c

E

n f E g E dE      

  (1) 

Since F-D function describes the probability of occupancy of energy 

state. Under thermal equilibrium condition, the electron 

concentration obtained from eqn. (1) is the equilibrium 

concentration.  

As f(E)rapidly approaches zero for higher energies, the integral in 

eqn. (1) can be re-written as 

  ( ) ( )

c

c

E

n f E g E dE



 
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Where, E is the kinetic energy of the electron. 

 

 

            E 

 

Ec 

                        Conduction band 

In the above fig. the bottom edge of conduction band EC corresponds 

to the potential energy of an electron at rest in conduction band. 

Therefore the quantity (E – EC) represents the kinetic energy of 

conduction level electron at high energy level.  
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As E >EF   : 1
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Using this eqn in eqn. (3) we get 
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Add and subtract Ec to the exponential term in the above equation. 

 

dEeEEem
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e
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Let E-Ec = x     then dx = dE 

Lower limit when E=Ec    x = Ec– Ec= 0 

Upper limit when E=     x =  - Ec =   

Therefore dxexem
h

n axkT

EE

e

CF






0

2
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3
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             (4) 

The integral is similar to standard integral. 

The solution of eqn.(4) is given by 

 
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0
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Rearranging the term we get 
3/ 2

*
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2

2
2 C FE E kTem kT
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   
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( )

CN C FE E kT
n e

 
     (6) 

Nc is temperature-dependent material constant known as effective 

density of states in the conduction band. 
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Expression for hole concentration in valence band 

If f (E) is the probability for occupancy of an energy state at 

E by an electron, then probability that energy state is vacant is given 

by [1- f(E)]. Since hole represents the unoccupied state in valence 

band, the probability for occupancy of state at E by a hole is equal to 

probability of absence of electron at that level. The hole 

concentration in valence band is therefore given by 

 
vE

1 ( ) ( )v

bottomband

p f E g E dE    

  (7) 

 

             Ev 

  E 

 

 

Solving equation 7 we arrive at hole concentration, kT

EE

v

vF

eNp

)( 

  

Where, Nv is temperature-dependent material constant known as 

effective density of states in the valence 

band.

3/ 2
*

v 2

2
  N 2 hm kT
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h
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  

 
 

Fermi level in intrinsic semiconductor 

In an intrinsic semiconductor electron and hole concentrations are 

equal. 

              Therefore   n = p 

 

       kT

EE

V
kT

EE

c

VFFC

eNeN
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Taking logarithm on both side and rearranging the term, we get 

=>  

Multiplying by kT throughout 

=>
VF

C

V
FC EE

N

N
kTEE 








 ln  

  =>
VC

C

V
F EE

N

N
kTE 








 ln2  

   => 















 


C

VVC
F

N

N
kT

EE
E ln

2

1

2
 

Substituting the values of NV and NC and after simplification we get 
*

h

*

e

m3
ln

2 4 m

C v
F

E E
E kT

  
    
   

 (1) 

As kT is small and the effective mass *

em and *

hm do not differ much, 

the second term in the eqn. (1) may be ignored. 

If *

em = *

hm , then we get  

2

C v
F

E E
E

 
  
 

   (2) 

we can write eqn. (2) as  

 2 2

C v v v C v
F v

E E E E E E
E E

    
   
 

 

 

    

2

C v g

g

F v

but E E E

E
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If top of the valence band Ev is taken as zero level, then 
2

g

F

E
E 
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Thus Fermi level in the intrinsic semiconductor lies at the centre of 

the energy gap as shown below: 

 

 

  

 

 

 

 

 

 

 

 

 

INTRINSIC DENSITY, ni 

In an intrinsic semiconductor at T=0K, the electron concentration in 

the conduction band is identical to hole concentration in the valence 

band. 

n=p=ni 

From this, we get 

    np=ni
2
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v
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But Ec-Ev=Eg 
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Substituting the values of Nc and Nv we get,  

kTE

hei
geTmm

h

k
n

2/2/34/3**2/3

2
)(]

2
[2





 

The following important points may be inferred from the above 

relation 

1. The intrinsic density is independent of Fermi level position. 

2. The intrinsic density is a function of band-gap Eg, which 

represents the energy needed to break a bond. 

3. The intrinsic density strongly depends on the temperature.  

The contribution of temperature increase to ni is mostly due 

to the exponential term and only to a marginal extent due to 

the term T
3/2

. 

 

Extrinsic semiconductor 

The intrinsic semiconductor has low conductivity which is 

not amenable to control. However a judicious introduction of 

impurity atoms in an intrinsic semiconductor produces useful 

modification of its electrical conductivity. The method of 

introduction of controlled quantity of impurity into an intrinsic 

semiconductor is called doping. The impurity added is called dopant. 

The semiconductor doped with impurity atoms is called extrinsic 

semiconductor. There are two types of extrinsic semiconductor 

namely p-type & n-type which are produced depending on the group 

of impurity atoms. 

n-type semiconductors are produced when  pure 

semiconductors are doped with pentavalent impurity atoms such 

Phosphorous, Arsenic etc. 

p-type semiconductors are produced when  pure 

semiconductors are doped with trivalent impurity atoms such as 

Aluminum, Boron etc. 
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Temperature variation of carrier concentration in extrinsic 

semiconductor 

The dependence of electron concentration on temperature for n-type 

semiconductor is as shown in the figure below. 

 

 

           
 

 

 

 

 

 

 

At 0K the donor levels are filled which means that all the donor 

electrons are bound to the donor atoms. At low temperature, 

corresponding to region- I, there is no enough energy to   ionize all 

the donors and not at all enough to break covalent bond. As 

temperature increases, the donor atoms get ionized and donor atoms 

go into the conduction band. The region-I is known as ionization 

region. Occasionally a covalent band maybe broken out, but number 

of such events will be insignificantly small. At about 100K all donor 

atoms are ionized, once all electrons from donor level are excited 
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into conduction band, any further temperature increase does not 

create additional electrons and the curve levels off.  The region II is 

called depletion region. In the depletion region the electron 

concentration in the conduction band is nearly identical to the 

concentration of dopant atoms. 

If   ND    is donor concentration then 

nn = ND ( depletion region) 

                          Where nn – electron concentration in n-type 

As temperature grows further, electron transitions from valence band 

to conduction band increases. At high temperature (region-III) the 

number of electron transition becomes so large that the intrinsic 

electron concentration exceeds the electron concentration due to 

donor. This region is therefore called intrinsic region. In intrinsic 

region, nn = ni 

P type semiconductor 

Similarly in p-type semiconductor, the acceptor levels are 

vacant at 0K & valence band is full. As temperature increases in the 

ionization region, the electrons from the valence band jump into 

acceptor level. However, the electrons do not acquire enough energy 

to jump into conduction band levels. At the temperature Ts, the 

acceptor levels are saturated with electrons. The region- II lying 

between Ts(saturation temperature) and Ti is called the saturation 

region. In case of p-type materials within this temperature interval 

the hole concentration remains constant as thermal energy is not yet 

sufficient to cause electron transition from valence band to 

conduction band. In the saturation region, the hole concentration is 

equal to the acceptor impurity concentration. Thus pp = NA 

With increase of temperature beyond T, electron transition due to 

intrinsic process commence & hole concentration due to intrinsic 

process far exceeds that due to impurity atoms. 

In region-III, pp = ni 
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Fermi level in extrinsic semiconductor 

N-type semiconductor 

The carrier concentration in extrinsic semiconductors varies 

with temperature as discussed earlier. It follows that the probability 

of occupancy of respective bands & position of Fermi level varies 

with temperature. 

In n-type semiconductor, in low temperature region the 

electron in the conductor band is only due to the transition of 

electrons from donor levels. Therefore Fermi level lies between the 

donor level ED& the bottom edge of conduction band. 

 

 

 

 

 

 

 

 

 

As temperature increases the donor level gradually gets depleted & 

the Fermi level shifts downward. At the temperature of depletion Td, 

the Fermi level coincides with the donor level   ED 

i.e. EFn = ED. 

As temperature increases further above Td, the Fermi level 

shifts downward approximately in a linear fashion, though electron 
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concentration in the conduction band remains constant. This is in 

accordance with the relation
D

cDc
F

N

NkTEE
E

n
ln

22



 . 

At temperature Ti, where intrinsic process contributes to electron 

concentration significantly, the Fermi level approaches the intrinsic 

value EFi = Eg/2. With further increase in temperature the behaviour 

of extrinsic semiconductor transitions into that of an intrinsic type & 

Fermi level stays at EFi .Thus 

EFn = EFi= Eg/2. 

 

P-type semiconductor 

In case of p-type semiconductor the Fermi level EFp   rises with 

increasing temperature from below the acceptor level to intrinsic 

level  EFi   as shown in fig2. 

2

A v
Fp

E E
E


    (ionization region) 

As temperature increases further above Ts, the Fermi level shifts 

downward approximately in linear fashion, though hole 

concentration in the valence band remains constant. This is in 

accordance with the relation
A

vAv
F

N

NkTEE
E

p
ln

22



 .   

EFp = EA       (at T=Ts)  

 

And  EFp = Eg/2.  
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Effect of variation of impurity concentration: 

n-type semiconductor 

 

The addition of donor impurity to an intrinsic semiconductor leads to 

the formation of discrete donor level below the bottom edge of 

conduction band. At low impurity concentrations the impurity atom 

are spaced far apart & do not interact with each other.  With an 

increase in the impurity concentration the impurity atom separation 

in the crystal decreases & they tend to interact. Consequently the 

donor level also undergoes splitting & form energy band below the 

conduction band. The larger the doping concentration, the broader is 

the impurity band & at one stage it overlaps with the conduction 

band. 

  



UNIT- III: ELECTRICAL PROPERTIES OF 

METALS AND SEMICONDUCTORS 
 

The broadness of donor levels into a band is accompanied by a 

decrease in the width of forbidden gap & also the upward 

displacement of Fermi level. The Fermi level moves closer & closer 

to the conduction band with increasing impurity concentration & 

finally moves into the conduction band as donor band overlaps the 

conduction band. 

 In similar way, in p-type semiconductor, the acceptor level 

broadens and forms into a band with increasing impurity 

concentration which ultimately overlaps the valence band. The Fermi 

level moves down closer to the valence band and finally at high 

impurity concentration it will shift in to valence band.  
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HALL EFFECT IN SEMICONDUCTORS: 

 

The Hall effect in metals is similar to that of semiconductors. In case 

of metals and n -type semiconductors the majority charge carriers are 

electrons and hence the same derivation holds good for both. In a p-

type semiconductor the only difference is that majority charge 

carriers are holes, with positive charge, hence with slight 

modifications we can obtain the Hall effect parameters following 

themethod used for metals.   

Let us consider a rectangular plate of p-type semiconductor. When 

potential difference is applied across its ends, a current „I‟ flows 

through it along x direction. If holes are majority charge carriers in 

p-type semiconductors then the current is given by 

   I = pAevd   (1) 

Where p- concentration of holes 

A-Area of cross section of end face 

e- charge on the hole 

vd- drift velocity of holes 

thereforevd = I/pAe = I/pwte    (2) 

 

Anyplane perpendicular to current flow direction is an equipotential 

surface. Therefore potential difference between front and rare faces 

is zero. If magnetic field is applied normal to crystal surface and also 

to the current flow, a transverse potential difference is produced 

between the faces F & F
/
 (fig.

.
It is called Hall voltage VH. 
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Fig. Hall effect in p type semi conductor 

 

 

 

 

 

Fig. Direction of magnetic force and Hall field in p-type 

semiconductor 

 

Before the application of magnetic field B, the holes move in an 

orderly way parallel to faces F & F
/
. On the application of magnetic 

field B, the holes experience a sideway deflection due to the Lorentz 

force FL. The magnitude of this force is given by 

   FL = e B vd 
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Because of this force, holes are deflected towards the front face F 

and pile up there. Initially the material is electrically neutral 

everywhere. However, as holes pile up on the front side, a 

corresponding equivalent negative charge is left on the rare face F
/
. 

As a result an electric field is produced across F & F
/
.The direction 

of electric field will be from front face to rare face. It is such that it 

opposes the further pile up of holes on the front face F. A condition 

of equilibrium is reached when FH due to transverse electric field EH 

balances the Lorentz force. The transverse electric field EH is known 

as Hall field. 

 In equilibrium condition 

    FL = FH 

                              FH = e EH = e(VH/w)  (3) 

                      Substituting for FL and FH in eqn (3) we get  

    eBvd = eVH/w            (5) 

        Substituting for vd   from equation (2) in equation   (5) 

      (6) 

 

  Hall voltage VH=                     (7) 

 

Reciprocal of Carrier charge density is called Hall co-efficient RH 

RH= 1/pe 

Equation (6) can be written as  

 

                RH =  
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The Hall voltage is a real voltage & can be measured with a 

voltmeter with the direction of magnetic field & current depicted in 

this fig, the sign of Hall voltage is +ve. 

 

For n-type semiconductor Hall voltage will be –ve, when the 

direction of current is same as in the fig. Therefore by knowing the 

sign of Hall voltage the type of semiconductor & the sign of the 

majority charge carriers will be known. 

The carrier concentration is given by 

H

1
p

R e H

BI

V te
   

In case of n-type semiconductor 

H

1
n

R e H

BI

V te
   

 

 

DIELECTRICS 

Materials such as glass, ceramics, polymers and paper are non-

conducting materials. They prevent the flow of current through them, 

therefore they can be used for insulation purposes. When the main 

function of non-conducting materials is to provide electrical 

insulation they are called Insulators. 
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distance 

 

Figure 1: Band diagram of an insulator 

When non-conducting materials are placed in an electric field, they 

undergo appreciable changes as a result of which they act as stores of 

electric charges. When charge storage is the main function, the 

insulating materials are called Dielectrics. For a material to be a 

good dielectric, it must be an insulator. Hence any insulator is a 

dielectric. 

  The forbidden energy gap (Eg) between the valence band and 

conduction band is very large (fig.1) in dielectrics and excitation of 

electrons from valence band to conduction band is not possible under 

ordinary conditions. Therefore conduction cannot occur in a 

dielectric. Even if the dielectric contains impurities, extrinsic 

conduction cannot occur as observed in case of extrinsic 

semiconductors. The resistivity of an ideal dielectric is infinity, in 

practise dielectrics conduct electric current to a negligible extent and 

their resistivities range from 10
10

 to 10
20

Ωm. 
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Electric dipole and dipole moment 

 

 

A pair of equal and opposite charges separated by a small distance is 

called an electric dipole and the product of the magnitude of one of 

the charges and the distance of their separation is called dipole 

moment(µ). 

Consider two charges –q and +q with a distance of separation   is 2a 

where a is the distance from the centre of dipole to one of the charge 

as shown in figure 2. The dipole moment for this arrangement is 

given by 

µ= (2a)q…………(1) 

Polar and Non-polar dielectrics: 

   A dielectric material doesn‟t possess any free electrons. All the 

electrons are bound very strongly to the respective nuclei of the 

atoms of the   parent molecules. Each molecule consists of equal 

number of positive and negative charges. All the positive charges are 

concentrated in the nuclei, which are surrounded by electron clouds 

in which all the negative charges are distributed. 

 

   If in the molecules of some dielectric materials, the effective centre 

of the negative charge distribution coincides with the effective centre 

of the positive charge distribution such materials are called non-

polar dielectrics.eg Hydrogen, carbondioxide etc. 

Figure 2: Electric dipole 
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In some dielectric materials, the effective centres of the negative and 

positive charges in the molecules do not coincide with each other  in 

the absence of an external electric field. Each molecule behaves like 

a permanent dipole and the materials comprising of such dipoles 

are called polar dielectrics. egHCl, H2O etc. 

 

Polarization 

   If a dielectric is placed in an electric field of strength „E‟, the 

electron cloud will be displaced in the direction opposite to „E‟ by a 

distance   „d‟ with respect to the nucleus. The centres of gravity of 

positive and negative charges in the atom no more coincide. 

  The atom is equivalent to the system of two charges, q=Ze of equal 

magnitude but opposite in sign separated by a distance  „d‟ and the 

atoms behaves like a dipole and it is called induced dipole. The 

atom is said to be polarized. 

 

 
 

Figure 5 

The induced dipole sets up its own electric field which is opposite in 

direction to the external field. 

 The dipole moment µ is a vector, directed along the axis of the 

dipole from the negative charge to the positive charge. 

   When the molecule is polarized, restoring forces due to coulomb 

attraction come into play    which   tends to pull the displaced 

 E=0 E>0 
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charges together. The charges separate until the restoring force 

balances the force due to the electric field. 

  The induced dipole moment is proportional to the field strength. 

The larger the field, greater the displacement of charges and hence 

larger the induced dipole moment. The induced dipole moment is 

given by  

µ=αE 

 

α is the polarizability of the molecule. It characterizes the capacity 

of electric charges in a molecule to suffer displacement in an electric 

field. The unit of polarizability is Fm
2
. The induced dipole moment 

vanishes as soon as the electric field is switched off. 

 

 

Dipole in an electric field 

 
 

 

When a polar molecule is placed in a uniform electric field „E‟ 

(figure 6), the field exerts a force +qE on the charge +q and –qE on –

q. The net force on the dipole is zero since the two forces acting on it 

are equal and opposite to each other. Therefore, there is no 

translational force on the dipole in the uniform field. The two forces 

are anti parallel and separated by perpendicular distance, hence  

Figure 6: An electric dipole in a uniform electric field 
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constitutes a couple, which tends to rotate the dipole. The torque on 

the dipole is given by  

 sin2aqE =  sinE   (q2a=µ) 

 

Displacement of positive and negative charges in the molecules of a 

dielectric under the action of applied electric field leading to the 

development of dipole moment is known as dielectric Polarization.   

 

 

 
Figure 7 

 

Consider an electrically neutral slab inserted between the plates of a 

parallel plate capacitor as shown in figure 7. Dielectric is imagined 

to be divided into large number of identical cells of volume dv. 

Under the action of external electric field, charges are induced in 

each cell and each cell acquires a dipole moment dµ.  

   Then intensity of polarization “P” is defined as the total dipole 

moment per unit volume of the material. 

 

 dv

d
P


=

v


 

Dielectric constant 

For isotropic materials the electric flux density E and the electric 

induction (or electric displacement) D are related by the equation 
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D=ε0εrE 

where ε0=8.854x10
-12

F/m, is the dielectric constant of vacuum and εr 

is the dielectric constant or relative permittivity for the material. It 

has no units. 

Dielectric susceptibility 

  The magnitude of polarization is directly proportional to the 

intensity of the electric field. 

Thus,                     P=χε0E    (for linear dielectrics) 

χ (chi) is the proportionality constant and is called the dielectric 

susceptibility of the material. It characterizes the ease with which the 

dielectric material can be influenced by an external field. P is a 

measure of the polarization produced in the material per unit electric 

field. 

Relation between εrand χ 

In order to describe the combined effects of the applied electric field 

E and electric polarization P, an auxiliary vector D called Electric 

displacement vector is introduced.    D=ε0E+P 

Substituting for P=χε0E in the above equation 

D=ε0E+χε0E 

D= (1+χ)ε0E 

D=ε0 εrE 

whereεr = 1+χ 

ε0 is the absolute permittivity  of the free space and εr is the relative 

permittivity or the dielectric constant of the material. 
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Types of Polarization 

i) Electronic or Atomic Polarization: 

 

 
Figure 8 

This is the polarization that results from the displacement of electron 

clouds of atoms or molecules with respect to the heavy fixed nuclei 

to a distance that is less than the dimensions of atoms or molecules 

(figure 8). This polarization sets in over a very short period of time, 

of the order of 10
-14

-10
-15

s. It is independent of temperature. 

The polarization is given by Pe=NαeE …..(1) 

where N is the number of atoms/unit volume, αeis electronic 

polarizability. 

We have P=χε0E or 
E

P

0
  …(2) 

Dielectric constant εr=1+χ ….(3) 

Substituting eqn. (2) in eqn. (3) 

εr = 1+
E

Pe

0
 …..(4) 

Substituting for Pe from eqn (1) in eqn (4) 

εr =1+
E

EN e

0


 

εr = 1+
0

eN
  ………  (5) or

N

r
e

)1(0 



  

εr is the dielectric constant of a non polar gaseous dielectric. The 

above equation indicates that the dielectric constant depends on the 

polarizability of a molecule and the number of molecules in a unit 

volume of the dielectric. 
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ii) Ionic Polarization: 

   Ionic polarization occurs in ionic crystals. It is brought about by 

the elastic displacement of positive and negative ions from their 

equilibrium position. Eg. Sodium chloride crystal. 

 A NaCl molecule consists of Na
+
 ion bound to Cl

-
 ion through ionic 

bond. If the interatomic distance is  „d‟, the molecule exhibits an 

intrinsic dipole moment equal to “qd” where q is the charge of the 

electron and d is the distance of separation. 

 
Figure 9 

   When ionic solids are subjected to an external electric field, the 

adjacent ions of opposite sign undergo displacement (figure 9). The 

displacement causes an increase or decrease in the distance of 

separation between the atoms depending upon the location of the ion 

pair in the lattice. This polarization takes 10
-11

-10
-14

s to build up and 

is independent of temperature.  

Ionic polarization is given by  Pi= NαiE 

      For most materials, the ionic polarisability is less than electronic 

polarizability. Typically    αi= e
10

1  

iii) Orientation or dipole Polarisation 

      This polarization is a characteristic of polar dielectrics which 

consists of molecules having permanent dipole moment. In the 
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absence of external electric field, the orientation of dipoles is random 

resulting in a complete cancellation of each others effect (figure 10).    

   When the electric field is applied, the molecular dipoles rotate 

about their axis of symmetry and tend to align with the applied field 

and the dielectric acquires a net dipole moment and it is orientation 

polarization. 

 

 
 

Figure 10 

  The dipole alignment is counteracted by thermal agitation. Higher 

the temperature, the greater is the thermal agitation. Hence, 

orientation polarization is strongly temperature dependent.  

  In case of solids, the rotation of polar molecules may be highly 

restricted by the lattice forces, leading to a great reduction in their 

contribution to orientation polarization. Because of this reason, while 

the dielectric constant of water is about 80, that for solid ice is only 

10. 

  As the process of orientation polarization involves rotation of 

molecules, it takes relatively longer time than other two 

polarisations.  

  The build up time is of the order of   10
-10

s or more. The orientation 

polarizability     α0 =
kT3

2
 and orientation polarization P0 = 

kT

EN

3

2
 

Orientation polarization is inversely proportional to temperature and 

proportional to the square of the permanent dipole moment. 
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4. Space charge or Interface polarization: 

   This polarisation occurs in multiphase dielectric materials in which 

there is a change of resistivity between different phases, when such 

materials are subjected to an electric field, especially at high 

temperatures, the charges get accumulated at the interface, because 

of sudden change in conductivity across the boundary (figure 11). 

Since the accumulation of charges with opposite faces occurs at 

opposite parts in the low resistivity phase, in effect it leads to the 

development of dipole moment within the low resistivity phase 

domain. Eg. Non homogenous materials such as composites.  

 
Figure 11 

Internal field in a solid for one dimensional infinite array of 

dipoles  

When a dielectric material, either solid or liquid is subjected to an 

external electric field, each of the atoms develop a dipole moment 

and acts as an electric dipole. Hence the resultant field at any given 

atom will be the sum of applied electric field and the electric field 

due to the surrounding dipoles. The resultant local field is called the 

internal field (Ei)and is defined as the electric field that acts at a site 

of any given atom of a solid or liquid dielectric subjected to an 

external electric field and is the resultant of the applied field (E) and 

the field due to all the surrounding dipoles (E
'
) . 

Ei=E+E
'
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Figure 13: Linear array of atoms in an electric field 

The total field at „X‟ which is the internal field Ei, is the sum of the 

applied field (E) and the field due to all the dipoles (E
'
) 

Ei=E+E
'
 =E+

3
0

2.1

d

  

Thus, the combined effect of induced dipoles of neighbouring atoms 

is to produce a net field at the location of a given atom, which is 

larger than the applied field. 

 

ClausiusMosotti Equation 

 Let us consider a solid dielectric, which exhibits electronic 

polarizability. If αe is the electronic polarizability per atom, it is 

related to the bulk polarization P through the relation 

   P=αeNEi 

   Therefore αe= 
iNE

P
  ….(1)     

where N is the number of atoms per m
3
 and Ei is the local field.  

From Lorentz field equation Ei=E+ 
03

P
….(2) 

Substituting equation (2) in equation (1) we get  
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αe = 
]

3
[

0

P
EN

P



 

We have   E=
)1(0 r

P


 

Substituting for E in the above equation, we obtain 

 

αe =

]
3)1(

[
00 

PP
N

P

r




 

]
3

1

1

1
[

1

0 

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eN






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)1(3
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
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r N
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
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r
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
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The above equation is known as Clausius Mosotti equation.  

 

SOLVED NUMERICALS: 

1. What is the probability of a level lying 0.01 eV below the Fermi 

level not being occupied by electrons at T = 300K? 

Solution: 

Probability of electrons not being occupied = 1-f(E)  

                                                                = 1- (e
(E-E

F
)/k

B
T
+ 1)

-1
 

 = 1 - (e 
0.01/0.026

 + 1)
-1

 

                                                              = 1-[1/(1.47 + 1) ] = 0.405 

 

2. Find the temperature at which there is 1% occupancy probability 

of a state 0.5 eV above Fermi energy. 

Solution: 

f(E) = 0.01 = 1/[e 
(E-E

F
)/k

B
T
 + 1] for E-EF= 0.5 eV 
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Solving we get 0.01 = 1/[e
5797/T

 + 1].  

Thus e
5797/T 

= 1/0.01 - 1 = 99. 

Taking log we get, T = 5797/4.595 = 1261.1 K 

 

3. The effective mass of holes in a material is 4 times that of 

electrons. At what temperature would the Fermi energy be shifted 

by 10% from the middle of the forbidden energy gap? Given band 

gap = 1 eV. 

Solution:EF = (EC + EV)/2 + (3kT/4) log(mh/me) 

Fermi level is shifted by 10% = 0.1 eV. 

Originally Fermi energy was 0.5 eV above EV . 

Now it is 0.5+0.1 = 0.6 eV above EF. 

(EV+  0.6) eV = (EC+EV)/2 + (3kT/4)log(4) ----(1) 

And (EV+  0.5) eV = (EC+EV)/2  -----------(2) 

Subtracting 2 from 1 we get 0.1 eV = (3kT/4)log(4) 

0.1602x10
-19

J = (3x1.38x10
-23

xT/4)0.6021. 

                  T = 1116K 

4. For an intrinsic semiconductor with gap width Eg=0.7eV.  

Calculate the concentration of intrinsic charge carriers at 300K 

assuming that me*=mo (rest mass of electron). 

 

ni=33.49x10
18

 /m
3 

 

5. The Fermi level in silver is 5.5eV at 0K.  Calculate the number of 

free electrons per unit volume and the probability occupation for 

electrons with energy 5.6eV in silver at the same temperature. 

Solution: 

3/2

3/22 3

80
n

m

h
EF 



















       .1084.5 328  mxn  

 

kTEg
i e

h

mkT
n 2/

2/3

2

2
2 












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6. Calculate the probability of an electron occupying an energy level 

0.02eV above the Fermi level at 200K and 400K in a material. 

kT

EE
e

Ef
F





1

1
)(  

2001038.1

106.102.0
23

19

1

1
)(

xx

xx

e

Ef






 =0.24 

f(E) =0.36 at 400K. 

7. A semiconducting material 12 mm long, 5 mm wide and 1 mm 

thick has a magnetic flux density of 0.5 Wb/m
2
 applied 

perpendicular to the largest faces. A current of 20 mA flows 

through the length of the sample, and the corresponding voltage 

measured across its width is 37µV. Find the Hall coefficient of 

the semiconductor.  

Solution: 

Hall coefficient RH = Ey/JxBz= -1/ne. 

Since Ey = Vy/w, RH = Vy/wJxBz 

 Thus RH = (37x10
-6

x10
-3

)/(20x10
-3

x0.5)  = 3.7x10
-6

 m
3
C

-1
 

 

8. Calculate the dielectric constant of NaCl, if a NaCl crystal is 

subjected to an electric field of 1000 V/m and the resulting 

polarization is 4.3x10
-8

 C/m
2
. 

EP r )1(0    

0049.0
1010856.8

103.4
)1(

319

8

0






xx

x

E

P
r


  

0049.1r  

 

9. The dielectric constant of Helium at 0°C is 1.000074. The density 

of atoms is 2.7x10
25

/m
3
. Calculate the dipole moment induced in 

each atom when the gas is placed in an electric field of 3x10
4
 V/m. 
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Dipole moment induced in each atom is Ee where the electronic 

polarizability 41

25

12
0 104255.2

107.2

000074.010854.8)1( 





 x
x

xx

N

r
e


  

Dipole moment= Cmxxxx 37441 102767.7103104255.2    

 

10. An elemental solid dielectric material has a polarizability 7x10
-40

 

Fm
2
.Assuming the internal field to be Lorentz field, calculate the 

dielectric constant for the material if the material has 3x10
26

 

atoms/m
3
. 

7906.0
10854.83

107103

3)2(

)1(
12

4028

0









xx

xxxN e

r

r









 

33.12
2094.0

5812.2

7906.0)2()1(





r

rr x





 

 

S. No Sample Questions 

1.  An electron is accelerated by an electric field of 4V/cm, is 

found to have mobility 8x 10
-3 

m
2
 / Vs. What is its drift 

velocity? 

2.  How many valence electrons will a donor impurity has in a n-

type semiconductor? 

3.  What is a hole in context of semiconductors? 

4.  In Hall effect experiment what is the polarity of Hall voltage 

for a n-type semiconductor? 

5.  What will be the Fermi velocity of an electron in copper if 

Fermi energy (EF )= 6 eV ? 

6.  At 300K, if probability for occupancy of an energy state E by 

an electron is 0.75, calculate probability for occupancy of the 

same state by a hole? 

7.  Write any two assumptions of Drude-Lorentz theory? 

8.  Sketch the graph of Fermi factor f(E) verses E for the case 
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E=EF at at T> 0K in metals. 

9.  Define density of states in metals. 

10.  Write an expression for density of states in metals.  

11.  Sketch the variation of fermi level with temperature for n type 

semiconductor. 

12.  What are Fermions? 

13.  Outline the phenomenon of Hall effect in materials. 

14.  For silicon semiconductor with band gap 1.12eV, determine 

the position of the Fermi level at 300K if me
*
=0.12mo and 

mh
*
=0.28mo. 

15.  Distinguish between intrinsic and extrinsic semiconductors. 

16.  Find the probability that energy level at 0.2 eV below Fermi 

level being occupied at temperature 1000K? 

17.  What is the value of Fermi function when E=Efat T>0K? 

18.  What is the effect of increase of impurity concentration on 

band gap in extrinsic semiconductors? 

19.  Mention any two demerits of classical free electron theory. 

20.  Find the probability of a level lying 0.01 eV below the Fermi 

level being occupied by electrons at T = 0K? 

21.  What is the magnitude of Lorentz force in Hall effect 

experiment? 

22.  With neat sketch, show the Fermi level position in p-type 

semiconductor. 

23.  Give the expression for Ohm‟s law in terms of J,σ and E. 

24.  What is Fermi factor in Fermi Dirac distribution? 

25.  Find the relaxation time of conduction electrons in a metal if 

its resistivity is 2.5x10
-8

Ωm and it has 5x10
28

 conduction 

electrons/m
3
 

26.  Sketch the position of Fermi level at 0K in a band diagram of 

a n-type semiconductor, at low doping 

27.  Find the Fermi velocity of conduction electron if the Fermi 
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energy of silver is 8eV. 

28.  Determine the probability of occupancy of an energy level 

situated 0.05eV above the Fermi energy at temperature of 0K  

29.  Write an expression for carrier concentration of p-type 

semiconductor.  

30.  Write any two postulates of classical free electron theory of 

solids. 

31.  Give the relation between electrical conductivity and mobility 

of charge carriers in a conductor. 

32.  If a system is composed of indistinguishable, half integral spin 

particles and obeys Pauli exclusion principle, then what 

statistics is obeyed by the system? 

33.  What is the value of the Fermi factor for metals at room 

temperature? 

34.  Plot variation of Fermi factor with temperature in a metal. 

35.  Distinguish between free electron theory and band theory of 

solids in terms of influence of lattice on the electron moving 

in a metal. 

36.  Give expression for Fermi level at 0 k in an intrinsic 

semiconductor. 

37.  Find the temperature at which there is 1% probability that a 

state with energy 0.5 eV above Fermi energy is occupied?  

38.  What is Hall Effect? 

39.  Sketch the variation in the energy of the Fermi level in a „n‟ 

type semi-conductor as a function of temperature? 

40.  Describe in words Wiedemenn-Franz Law 

41.  What is the formula for intrinsic carrier density (ni)? 

42.  A wire of diameter 0.2 meter contains 10
28

 free electrons per 

cubic meter. For an electric current of 10A, calculate the drift 

velocity for free electrons in the wire? 

43.  The fermi level in an intrinsic semi-conductor is at .25 eV. 
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What is the width of the band gap? 

44.  Electrical conductivity of Cu is 5.78×10
7
Ω

-1
m

-1
. If the free 

electron density of Cu is 8.46×10
28

m
-3

. Find the mobility of 

electrons? 

45.  The fermi energy for an intrinsic semiconductor is at 5 eV. At 

0K, calculate the probability of occupation of electrons at E= 

5.5eV? 

46.  A sample of silicon is doped with 10
7
 phosphorous 

atoms/cm
3
. Find the Hall voltage, if the sample is 100µm 

thick, Ix=1 mA and Bz= 10
-5

Wb/m
2
? 

47.  Write any one drawback of classical free electron theory? 

48.  Write the relation for specific heat of a metal as per quantum 

free electron theory 

49.  Write the condition at which the value of f(E) = 1 at 0 K. 

50.  Mention any two assumptions of quantum free electron 

theory. 

51.  Find the relaxation time of conduction electrons in a metal of 

resistivity 1.54×10
-8

Ωm. If the metal has 5.8×10
28

 conduction 

electrons per m
3
. 

52.  Find the probability with which an energy level 0.02 eV 

below Fermi level will be occupied at room temperature of 

300K. 

53.  A copper strip of 2.0 cm wide and 1.0 mm thick is placed in a 

magnetic field of 15000 gauss. If a current of 200 A is setup 

in the strip with the Hall voltage appears across the strip is 

found to be 0.18 V. calculate the Hall coefficient. 

54.  Which statistical rule is obeyed by electrons in quantum free 

electron theory? 

55.  Where does the Fermi level lie in case of n type 

semiconductor with high impurity concentration? 

56.  Electron concentration in a semiconductor is 10
20

m
3
. 
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Calculate Hall coefficient? 

57.  What is doping in semiconductors? 

58.  Evaluate the probability of occupation of an energy level 0.4 

eV below the Fermi energy level in metal at zero Kelvin. 

59.  Copper has electrical conductivity of 9x107Ω
-1

m
-1

 and 

thermal conductivity of 300 Wm
-1

K
-1

 at 305K. Find the 

Lorentz‟s number on the basis of classical free electron 

theory? 

60.  If the probability of absence of electron in an energy level of 

valance band of semiconductor is 0.65 what is the probability 

of occupation in the same level by a hole? 

61.  In the band diagram of a p-type semiconductor show the 

position of the Fermi level when the doping concentration is 

low? 

62.  Graphically show the variation of ln(ne) with increasing 

temperature in Kelvin where ne is the electron concentration in 

an intrinsic semiconductor. 

63.  A wire of 4 mm radius carries a current of 8A. Find the 

current density? 

64.  Write the postulates of classical free electron theory and 

explain the failures of classical free electron theory. 

65.  Write the success of Quantum free electron theory. 

66.  Explain the variation of Fermi factor in metals with 

temperature. 

67.  Explain Fermi Dirac distribution function.  Show that at 

temperatures above 0K probability of occupancy of Fermi 

level in metals is 50%. 

68.  Derive an expression for the electron concentration in metals 

at 0K. 

69.  Derive an expression for the electron concentration in intrinsic 

semiconductor. 
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70.  Show that Fermi level of an intrinsic semiconductor lies in the 

middle of the band gap. 

71.  With a neat sketch explain the variation of  Fermi level in an 

n-type semiconductor with the increase in temperature. 

72.  What is Hall Effect?  Arrive at an expressions for Hall voltage 

in an n-type semiconductor. 

73.  Explain the change of band gap with variation in the doping 

concentration of an n type semiconductor. 

74.  Explain the variation the carrier concentration with increase in 

temperature in an n type semiconductor. 

75.  Define polarization? Explain the four types of polarization. 

76.  Arrive at ClausiusMosotti  Equation. 

77.  Define dielectric polarizability and dielectric susceptibility. 

 

Appendix 

Expression for hole concentration in valence band 

If f (E) is the probability for occupancy of an energy state at 

E by an electron, then probability that energy state is vacant is given 

by [1- f(E)]. Since hole represents the unoccupied state in valence 

band, the probability for occupancy of state at E by a hole is equal to 

probability of absence of electron at that level. The hole 

concentration in valence band is therefore given by 

 
vE

1 ( ) ( )v

bottomband

p f E g E dE    

  (7) 

 

Ev 

E 

 

Valence band 



UNIT- III: ELECTRICAL PROPERTIES OF 

METALS AND SEMICONDUCTORS 
 

1-f(E ) rapidly approaches to zero for lower energy levels, the above 

equation rewritten as 

 
vE

1 ( ) ( )vp f E g E dE


    

       dEEEm
h

Efp vh
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






 
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








 

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kT
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e

e
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EE
e
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F

kT

EE

F

F
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1
11               (8) 

For E<EF   (E-Ev) is negative.  Therefore 0


kT

EE
e F

 

Therefore 11 





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       Let Ev-E=x   then -dE = dx or dE = -dX 
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Above equation is of the standard form 
aa

dxex ax
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1






   where 

Ev-E= x  and  a=
kT

1
 

 2

3

2

3

*

3
)(

2
)2(

4
kTem

h
p kT

EE

h

vF

 






 


  

 kT

EE

h
vF

e
h

kTm
p

)(2

3

2

*
2

2















 

3/ 2
*

v 2

2
  N 2 hm kT

Let
h

 
  

 
 

where  Nv is temperature-dependent material constant known as 

effective density of states in the valence band. 

kT

EE

v

vF

eNp

)( 

  

Expression for the band gap of a Semiconductor: 

The band gap is the energy separation between the conduction 

band and the valence band of a semiconducting material. 

The conductivity of an intrinsic semiconductor is given by 

hiei enen    

    )( heien    

Substituting the value of ni, we get 
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The above equation can be written as 








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E
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g

2
exp   

Where )(
2

2
4

3

2

**
2

3

2 he
he e

m

mm
x

h

kTm
A 




















  

As 



1

  : 









kT

E
B

g

2
exp   We know that 

l

RA
  then  

       









kT

E

A

l
BR

g

2
exp  

        









kT

E
CR

g

2
exp

    

Where
A

Bl
C   

Taking log on both sides 
kT

E
CR

g

2
lnln   

                                             Therefore )ln(ln
2

CR
kT

Eg
  

The band gap is given by )ln(ln2 CRkTEg   

kT

E
CR

g

2
lnln  is of the form cmxy  : By taking ln R in the y-

axis and 
T

1
in the x-axis, if a graph is plotted, a straight line is 

obtained as shown in below figure. 
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                   Slope 

kT

E
m

g

2
  

                                                                                      Therefore 

kTmEg )(  

 

 

       

By finding the slope of the straight line, the band gap of the 

semiconductor is determined using the relation, Eg = 2k x slope of 

the straight line drawn between ln R and 1/T. 

 

Lorentz field 

 
 

Figure 16 

The local field in a three dimensional solid is determined by the 

structure of the solid.  

L 

M N 

ln C 

ln R 

1/T 
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Let us consider a dielectric slab kept in a uniform electric field, E 

(Figure 15 ). Let a molecule be at the point O and is surrounded by a 

spherical cavity of radius r. Let r be arbitrary but sufficiently large 

compared to molecular dimensions and sufficiently small compared 

to the dimensions of the dielectric slab. The spherical cavity contains 

many molecules within it. The molecule   at O experiences three 

electric fields acting on it. 

i) The external electric field E. 

ii) The field E1 due to induced charges on the surface of the spherical 

cavity. 

iii) The field E2 due to the molecular dipoles present in the spherical 

cavity. 

Therefore, the total internal field intensity, Ei is given by 

Ei=E+ E1+E2 

To calculate E1, let us imagine that the dielectric is removed from the 

sphere. For the actual pattern of the electric field not to be distorted, 

a surface electric charge should be placed on the spherical surface. 

At each point of the sphere, the surface charge density is given by  

                                            σ=P cos θ 

where θ is the angle between radius vector r and the direction E. The 

charge on the element dS of the surface of the sphere will be  

dq=σdS =P cos θ dS 

This charge will produce electric field intensity dE1 at the centre of 

the sphere 

               dE1= 2
04 r

dq


=

2
04 r

P


cosθdS 

  This electric field can be resolved into two components: one 

component dE1 cos θ parallel to the direction of E and the other 

dE1sinθ perpendicular to the direction of E. 

                      dE1cosθ= 
2

04 r

P


 cos

2 
θ dS 
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                       dE1cosθ= 
2

04 r

P


cosθsinθdS 

It is obvious that the perpendicular components of the upper and 

lower half of the sphere cancel each other and only the parallel 

components contribute to the total intensity E1. E1 is obtained by 

integrating dE1 over the whole surface area of the sphere. Thus, 
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But dS=2πr
2
sinθdθ. Therefore, 
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Let cosθ= x and therefore, -sinθ dθ =dx. 

when θ=0, cos θ=1 and θ=π, cos π=-1 
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As there exists symmetrical distribution of molecular dipoles around 

the molecules at O within the cavity, their contribution cancel each 

other. 

Therefore E2=0. 

Hence the total internal field is given by Ei=E+ E1 

Ei=E+ 
03

P
 

The field given by the above equation is called Lorentz field or 

local field. 

 


