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Introduction: 

At the beginning of the 20
th

 century, Newton’s laws of 

motion were able to successfully describe the motion of the 

particles in classical mechanics (the world of large, heavy and slow 

bodies) and Maxwell’s equations explained phenomena in classical 

electromagnetism. However the classical theory does not hold in 

the region of atomic dimensions. It could not explain the stability 

of atoms, energy distribution in the black body radiation spectrum, 

origin of discrete spectra of atoms, etc. It also fails to explain the 

large number of observed phenomena like photoelectric effect, 

Compton Effect, Raman Effect, Quantum Hall effect, 

superconductivity etc. The insufficiency of classical mechanics 

led to the development of quantum mechanics (QM).  

 

Quantum mechanics gives the description of motion and 

interaction of particles in the small scale atomic system where the 

discrete nature of the physical world becomes important. With the 

application of quantum mechanics, most of the outstanding 

problems have been solved. The direct implications of QM though 

very subtle have dramatic effect in our day to day life.  For 

example, QM successfully introduced the concept of discrete 

energy which led to the conception and advancements in quantum 

computing, it also paved way for efficient long distance transfer of 

large quantities of data electronically. By understanding the 

electronic spin and related atomic properties, QM has aided in 

realizing energy efficient materials that can be applied to 

consumable electronic equipment and in commercial transport 

vehicles like Hyper loop, Maglev trains among others.   
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   Black Body Radiation 

Black-body radiation is the type of electromagnetic 

radiation emitted by a black body (an opaque and non-reflective 

body) held at constant, uniform temperature. In nature there are no 

perfect black bodies.  

 

Black Body Spectrum: It is a graph showing the variation of 

the energy of the black body radiations as a function of their 

wavelengths or frequencies. The energy distribution in the black 

body spectrum is explained by Wien’s distribution law in the 

lower wavelength region and Rayleigh Jeans law explains the 

energy distribution in the larger wavelength region. 

Wien’s law: 
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 Rayleigh Jeans law  

 

                  

 

Fig: Blackbody Radiation spectrum 
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Neither Wien’s law nor Rayleigh- jean’s law could explain the 

energy distribution in the entire blackbody spectrum. The energy 

distribution in the entire blackbody spectrum was successfully 

explained by Max. Planck by quantum Theory.

 

 

Planck’s quantum theory 

The energy distribution in the black body radiation spectrum 

was successfully explained by Max Planck in the year 1900. 

According to Planck’s quantum theory thermal energy is not 

emitted or absorbed continuously, but it is emitted or absorbed in 

discrete quantities called quanta. Each quanta has an energy ‘hν’ 

where h is the Planck’s constant. Applying the Planck’s quantum 

theory an expression for the energy distribution in the black body 

spectrum was obtained and it is called Planck’s formula.  

    The Planck’s formula is as follows 
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Where k is the Boltzmann’s constant; h- Planck’s constant and c is 

the velocity of light, λ is the wavelength of the black-body 

radiation and ω is the angular frequency of light. 

 

Photoelectric effect: 

When the light of a suitable wavelength shines on certain 

materials, then electrons are spontaneously emitted from the 

surface of material. It can be observed in any material but most 
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readily in metals and good conductors. This phenomenon is known 

as the photoelectric effect.   

The materials that exhibit photoelectric effect are called 

photosensitive materials and the emitted electrons are called 

photoelectrons. Heinrich Hertz first observed this phenomenon in 

1887.  

The electrons are emitted only when the photons reach or 

exceed a threshold frequency (energy) and below that threshold, no 

electrons are emitted from the metal regardless of the light 

intensity or the length of time of exposure to the light. To explain 

this phenomenon, Albert Einstein proposed that light be seen as a 

collection of discrete bundles of energy (photons), each with 

energy hυ, where υ is the frequency of the light that is being 

quantized and h is known as the Planck constant. 

  

Einstein’s photoelectric equation: 

Einstein, in 1905, proposed that the light energy is localized in 

small packets similar to the Planck’s idea of quanta, and named 

such packets as photons. According to Einstein, in photoelectric 

effect one photon is completely absorbed by one electron, which 

thereby gains the quantum of energy and may be emitted from the 

metal.  
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Thus the photon energy is used in the following two parts: 

i). A part of its energy is used to free the electron from the 

atoms of the metal surface. This energy is known as a photoelectric 

work function of metal (Wo) 

ii) The other part is used in giving kinetic energy (½ mv
2
) to 

the electron.  

Thus 
21

2
o

h W mv    

    where ‘v’ is the velocity of the emitted electron.  

This equation is known as Einstein’s photoelectric equation. When 

the photon’s energy is of such a value that it can just liberate the 

electron from metal, then the kinetic energy of the electron will be 

zero. Then the above equation reduces to
oo Wh  , where 

o  is 

called the threshold frequency.  

Threshold frequency is defined as the minimum frequency which 

can cause photoelectric emission. Below this frequency no 

emission of electron takes place.  

 

Compton Effect:  

When a monochromatic beam of high frequency radiation (X – 

rays, γ – rays, etc.) is scattered by a substance, then the scattered 

radiation contains two components  - one having a lower frequency 

or greater wavelength called as modified radiation and the other 

having the same frequency or wavelength called as unmodified 
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radiation. This phenomenon is known as Compton effect and was 

discovered by Prof. A.H. Compton in 1921.  The process of 

recoiling of electron and scattering of photon is as shown in the 

following figure:  

 

Schematic diagram of Compton Effect 

 

 According to the quantum concept of radiation, the radiation 

is constituted by energy packets called photons. The energy of 

photon is hν, where h is Planck’s constant and ν is the frequency of 

radiation. The photons move with velocity of light c, possess 

momentum hν/c and obey all the laws of conservation of energy 

and momentum. According to Compton, the phenomenon of 

scattering is due to an elastic collision between two particles, the 

photon of incident radiation and the electron of the scatterer. When 

the photon of energy hν collides with the electron of the scatterer at 

rest, it transfers some energy to the electron, i.e., it loses the 

energy. The scattered photon will therefore have a smaller energy 

Scattered photon 

Electron 

 at rest Incident photon 
θ 

φ 

Recoil electron 

 

 

 

 

 

 

 

 

 

  

 

Φ----- is the recoil angle 

θ------ is the scattering angle. 
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and consequently a lower frequency (ν
’
) or greater wavelength (λ

’
) 

than that of the incident photon. The observed change in frequency 

or wavelength of the scattered radiation is known as Compton 

Effect. In the scattering process, the electron gains kinetic energy 

and thus recoils with a velocity v. The changed wavelength of the 

photon scattered through an angle θ is given by  

'

0

( ) [1 cos ]
h

m c
         

Wave and particle duality of radiation 

To understand the wave and particle duality, it is necessary to 

know what a particle is and what a wave is. 

A particle is a localized mass and it is specified by its mass, 

velocity, momentum, energy, etc. In contrast a wave is a spread out 

disturbance. A wave is characterized by its wavelength, frequency, 

velocity, amplitude, intensity, etc. It is hard to think mass being 

associated with a wave. Considering the above facts, it appears 

difficult to accept the conflicting ideas that radiation has a wave 

particle duality. However this acceptance is essential because the 

radiation exhibits phenomena like interference, diffraction, 

polarization, etc., and shows the wave nature and it also exhibits 

the particle nature in the black-body radiation effect, photoelectric 

effect, Compton Effect etc.   

Radiation, thus, sometimes behave as a wave and at some other 

time as a particle, this is the wave particle duality of radiation.   
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De Broglie’s concept of matter waves. 

 Louis de-Broglie in 1924 extended the wave particle dualism 

of radiation to fundamental entities of physics, such as electrons, 

protons, neutrons, atoms, molecules, etc. de-Broglie put a bold 

suggestion that like radiation, matter also has dual characteristic, at 

a time when there was absolutely no experimental evidence for 

wavelike properties of matter waves. de Broglie Hypothesis of 

matter waves is as follows. 

 In nature energy manifests itself in two forms, namely matter 

and radiation. 

 Nature loves symmetry. 

 As radiation can act like both wave and a particle, material 

particles (like electrons, protons, etc.) in motion should 

exhibit the property of waves.  

These waves due to moving matter are called matter waves or de- 

Broglie waves or pilot waves.  

 

Wavelength of matter waves:  

The concept of matter waves is well understood by combining 

Planck’s quantum theory and Einstein’s theory. Consider a photon 

of energy E, frequency γ and wavelength λ.  

By Planck’s theory 



hc

hE   

By Einstein’s mass-energy relation 2mcE           
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By equating and rearranging the above equations, we get 

                                                      p

h

mc

h

hc
mc









2

 

Where, p is the momentum of the photon and h is a Planck’s 

constant. 

 Now consider a particle of mass m moving with a velocity v 

and momentum p. According to the do-Broglie hypothesis matter 

also has a dual nature. Hence the wavelength λ of matter waves is 

given by  

                       
p

h

mv

h
   

 This is the equation for the de-Broglie wavelength.  

 

De Broglie wavelength of an electron 

 Consider an electron of mass ‘m’ accelerated from rest by an 

electric potential V. The electrical work done (eV) is equal to the 

kinetic energy E gained by the electron. 

                              

mEmv

mEvm

mvE

eVE

2

2

2

1
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2









 

 



UNIT II – QUANTUM MECHANICS 
 

10 

 

 Therefore wavelength of electron wave  

                          

2

h h

p mv

h

mE





 

 

 

             But  eVE   

                        

2

2

h
h me

meV V
  

 

Substituting the values of e, m and h, we get 

                          
12.28

2

oh
A

me


 

 

                         
12.28 oA

V
 

 

 

Note: Instead of a an electron, if a particle of charge ‘q’ is 

accelerated through a potential difference V, then 

mqV

h

2

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Properties of matter waves and how they are different from 

electromagnetic waves 

 

1. Lighter the particle, greater would be the wavelength of 

matter waves associated with it. 

2. Smaller the velocity of the particle, greater would be the 

wavelength. 

3. For p = 0, λ is infinity ie., the wave becomes indeterminate. 

This means that matter waves are associated with moving 

particles only. 

4. Matter waves are produced by charged or uncharged particles 

in motion. Whereas electromagnetic waves are produced only 

by a moving charged particle. Hence matter waves are non – 

electromagnetic waves. 

5. In an isotropic medium the wavelength of an electromagnetic 

wave is a constant, whereas wavelength of a matter wave 

changes with the velocity of the particle. Hence matter waves 

are non- electromagnetic waves. 

6. A particle is a localized mass and a wave is a spread out 

disturbance. So, the wave nature of matter introduces a 

certain uncertainty in the position of the particle.  

7. Matter waves are probability waves because waves represent 

the probability of finding a particle in space. 
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Wave Packet 

A wave packet refers to the case where two (or more) waves 

exist simultaneously. A wave packet is often referred to as a wave 

group. This situation is permitted by the principle of superposition. 

In physics, a wave packet (or wave train) is a short "burst" or 

"envelope" of localized wave action that travels as a unit. A wave 

packet can be analyzed into, or can be synthesized from, an infinite 

set of component sinusoidal waves of different wavenumbers, with 

phases and amplitudes such that they interfere constructively only 

over a small region of space, and destructively elsewhere.
 
Each 

component wave function, and hence the wave packet, are 

solutions of a wave equation. Depending on the wave equation, the 

wave packet's profile may remain constant (no dispersion) or it 

may change (dispersion) while propagating. 

Phase velocity and Group velocity  

A monochromatic wave has velocity called the phase velocity 

given by  



k
v p  where ω is the angular frequency,  

2
k




  is the wave number, υ is the frequency.  However, if we 

have a compound wave(wave packet) that is composed of 

individual waves with a range of frequencies, each individual wave 

has its phase velocity, but the amplitudes of the waves add up to 

produce a wave packet which has a velocity all its own. This 
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velocity is called the group velocity (vg) and is usually different 

from the individual phase velocities of the waves that make up the 

wave packet. Such a wave packet possesses both wave and particle 

properties. Schrodinger postulated that moving particle (electron, 

proton..etc) is equivalent to a wavepacket rather than a single 

wave. The velocity with which the resultant envelope of the group 

waves travels is called group velocity (vg) and is equal to the 

particle velocity (v). 

     It is given by the expression  

dω

dk
gv v

k


  
  

 

 
Schematic diagram of Wave Packet  

Quantum mechanics ascribes a special significance to the wave 

packet; it is interpreted as probability amplitude.  The modulus 

square of the probability amplitude describes the probability 

density that a particle in a particular state will be measured to have 
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a given position or momentum. The equation that describes the 

evolution of this wave packet is the Schrödinger equation. It can be 

Time independent or Time dependent.  

Relation between group velocity and phase velocity  

Consider a non-relativistic particle of mass m having vp and vg 

as the phase velocity and group velocity respectively. If λ is the de 

Broglie Wavelength and ν the frequency of the wave, then 

 
Phase velocity

Whereω is the angular frequency of the wave

and k is the wave vector

( )
Group velocity

( )

2 2
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
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 
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 
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This equation shows that vg is less than vp , medium is dispersive. 

For a light wave in vaccum, there is no dispersion. Hence dvp / dλ  =  

0, so that vg = vp =c . This is true for elastic waves in a homogenous 

medium. 

 

Heisenberg’s uncertainty principle 

 Heisenberg’s uncertainty principle is a direct consequence of 

the dual nature of matter. In classical mechanics, a moving particle 

at any instant has a fixed position in space and a definite 

momentum which can be determined if the initial values are known 

(we can know the future if we know the present)  

 In wave mechanics a moving particle is described in terms of 

a wave group or wave packet. According to Max Born’s 

probability interpretation the particle may be present anywhere 

inside the wave packet. When the wave packet is large, the 

momentum can be fixed, but there is a large uncertainty in its 

position. On the other hand, if the wave packet is small the position 

of the particle may be fixed, but the particle will spread rapidly and 

hence the momentum (or velocity) becomes indeterminate. In this 

way certainty in momentum involves uncertainty in position and 
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the certainty in position involves uncertainty in momentum. Hence 

it is impossible to know within the wave packet where the particle 

is and what is its exact momentum. (We cannot know the future 

because we cannot know the present).  Thus we have 

Heisenberg’s uncertainty principle. 

 According to the Heisenberg’s uncertainty principle “It is 

impossible to specify precisely and simultaneously certain pairs of 

physical quantities like position and momentum that describe the 

behavior of an atomic system”. Qualitatively, this principle states 

that in any simultaneous measurement the product of the 

magnitudes of the uncertainties of the pairs of physical quantities is 

equal to or greater than h/4π (or of the order of h) 

 

Considering the pair of physical quantities such as position and 

momentum, we have 

    ΔpΔx ≥ h/4π                                 .….1 

Where Δp and Δx are the uncertainties in determining the 

momentum and the position of the particle.  Similarly, we have 

other canonical forms as  

     ΔEΔt ≥ h/4π     ……2 

     ΔJΔθ ≥ h/4π      ……3 

Where ΔE and Δt are uncertainties in determining energy and time 

while ΔJ and Δθ are uncertainties in determining angular 

momentum and angular position. 
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Illustration of Heisenberg’s uncertainty principle  

  

Broadening of spectral lines 

When an atom absorbs a photon, it rises to the excited state and 

it will stay in the excited state for certain time called the lifetime. 

Lifetime of atoms in the excited levels is of the order of 10
-8

s. 

When the atom comes to the ground state it emits a photon of 

energy exactly equal to the energy difference between the two 

levels as shown in the figure. 

 

Fig.  Line width for emitted photons 

The energy of the emitted photon is given by  

.................(1)
hc

E h


 
.
 

Where h is a Planck’s constant, ν is the frequency, c is the 

velocity of light and λ is the wavelength. 

 

Differentiating equation (1) with respect to wavelength (λ), we get 
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2
.................(2)

hc
E






   

According to Heisenberg’s uncertainty principle, the finite 

lifetime Δt of the excited state means there will be an uncertainty 

in the energy of the emitted photon is given by 

t

h




4
 

Substituting for ΔE from (2) and applying the condition of 

minimum uncertainty, we get 

    

2

hc

t

h

4
 

   or         
2

4 c t





 


  

 

This shows that for a finite lifetime of the excited state, the 

measured value of the emitted photon wavelength will have a 

spread of wavelengths around the mean value λ. This uncertainty 

in the measured value of wavelength demands for very narrow 

spread, the lifetime of the excited state must be very high (of the 

order of 10
-3

s). Such excited levels are called Metastable states. 

This concept is adopted in the production of laser light.  
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SCHRÖDINGER’S WAVE EQUATION  

In1926 Schrödinger starting with de-Broglie equation (λ = h/mv) 

developed it into an important mathematical theory called wave 

mechanics which found a remarkable success in explaining the 

behavior of the atomic system and their interaction with 

electromagnetic radiation and other particles. In water waves, the 

quantity that varies periodically is the height of water surface. In 

sound waves it is pressure. In light waves, electric and magnetic 

fields vary. The quantity whose variation gives matter waves is 

called wave function (ψ). The value of wave function associated 

with a moving body at a particular point x in space at a time t is 

related to the likelihood of finding the body there at a time. A wave 

function ψ(x,t) that describes a particle with certain uncertainty in 

position, moving in a positive x-direction with precisely known 

momentum and kinetic energy may assume any one of the 

following forms: 

Sin( ωt - kx) , cos( ωt - kx), e
i(ωt – kx)

, e
-i(ωt – kx)

 or some linear 

combinations of them.  

Schrödinger wave equation is the wave equation of which the 

wave functions are the solutions. It cannot be derived from any 

basic principles, but can be arrived at, by using the de-Broglie 

hypothesis in conjunction with the classical wave equation.  
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Time Independent one dimensional Schrödinger wave equation 

(TISE) 

 In many situations the potential energy of the particle does not 

depend on time explicitly; the force that acts on it, and hence the 

potential energy vary with the position of the particle only. The 

Schrödinger wave equation for such a particle is time independent 

wave equation. Let ψ(x,t) be the wave function of the matter wave 

associate with a particle of mass m moving with a velocity v. The 

differential equation of the wave motion is as follows. 

    
)1.(..........

1
2

2

22

2

tvx 






 

 

The solution of the Eq.(1) as a periodic displacement of time t is   

    ψ(x,t) =ψ0(x) e
-iωt

 …..(2) 

Where ψ0(x) is the amplitude of the matter wave. 

Differentiating Eq.2 partially twice w.r.t. to t, we get  

    



i

t





 ψ0(x) e

-iωt 

22

2

2




i
t





 ψ0(x) e

-iωt
  

    

2

2

2









t
 ψ0(x) e

-iωt
  

       





2

2

t


 - 2  ψ ……...(3) 

Substituting Eq.3 in Eq.1    
2 2

2 2x v

 



 


 …(4) 
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We have      
2

2
2

2

2

2 42























 k

v
 

Substituting this in Eq4, we get 

    )5.(..........
4

2

2

2

2











x
 

    
)6.(..........0

4
2

2

2

2











x  

Substituting the wavelength of the matter waves λ=h/mv in Eq.6 

we get  

    
)7.(..........04

2

22
2

2

2









h

vm

x  

If E and V are the total and potential energies of the particle 

respectively, then the kinetic energy of the particle   

VEmvE  2

2

1
 

)(222 VEmvm   

 

Substituting this in Eq.7, we get   

     

)8.(..........0)(
8

2

2

2

2








VE

h

m

x  

 

Hence ψ is a function of x alone and is independent of time. This 

equation is called the Schrödinger time- independent one 

dimensional wave equation. 
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Physical significance of the wave function 

The wave function ψ(x, t) is the solution of Schrödinger wave 

equation. It gives a quantum-mechanically complete description of 

the behavior of a moving particle. The wave function ψ cannot be 

measured directly by any physical experiment. However, for a 

given ψ, knowledge of usual dynamic variables, such as position, 

momentum, angular momentum, etc., of the particle is obtained by 

performing suitable mathematical operations on it. 

 

The most important property of ψ is that it gives a measure of the 

probability of finding a particle at a particular position.
 
ψ is  also 

called the probability amplitude. In general ψ is a complex 

quantity, whereas the probability must be real and positive. 

Therefore a term called probability density is defined. The 

probability density P (x,t)  is a product of the wave function ψ 

and its complex conjugate ψ
*
. 

   
*( , )P x t   

2
),( tx        

  

Normalization of wave function 

 If ψ is a wave function associated with a particle, then    d2

is the probability of finding the particle in a small volume dτ. If it 

is certain that the particle is present in a volume τ then the total 

probability in the volume τ is unity i.e.,  


 12d . This is the 

normalization condition.  
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In one dimension the normalization condition is  
x

dx 12  

Note: When the particle is bound to a limited region the probability 

of finding the particle at infinity is zero i.e., at x * is zero. 

 

Properties of wave function: 

The wave function ψ should satisfy the following properties to 

describe the characteristics of matter waves. 

1.ψ must be a solution of Schrödinger wave equation. 

2.The wave function ψ should be continuous and single valued 

everywhere. Because it is related to the probability of finding a 

particle at a given position at a given time, which will have only 

one value. 

3.The first derivative of ψ with respect to x should be continuous 

and single valued everywhere, since it is related to the 

momentum of the particle which should be finite. 

4.Ψ must be normalized so that ψ must go to 0 as x  , so that 

 d
2 over all the space be a finite constant. 

Eigen functions and Eigen values 

 The Schrödinger wave equation is a second order partial 

differential equation; it will have many mathematically possible 

solutions (ψ). All mathematically possible solutions are not 

physically acceptable solutions. The physically acceptable 

solutions are called Eigen functions (ψ).  
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The physically acceptable wave functions ψ has to satisfy the 

following conditions: 

1. ψ is single valued.  

2. ψ and its first derivative with respect to its variable are 

continuous everywhere. 

3. ψ is finite everywhere.  

       Once the Eigen functions are known, they can be used in 

Schrödinger wave equation to evaluate the physically measurable 

quantities like energy, momentum, etc., these values are called 

Eigen values.  

In an operator equation  
^

O  where 
^

O  is an operator for the 

physical quantity and ψ is an Eigen function and λ is the Eigen 

value.  For example :             
  

 EH 


 
 

Where H is the total energy (Hamiltonian) operator, ψ is the Eigen 

function and E is the total energy in the system. We can have 

similar  equations for the momentum       

 pP 


 
 

Where P is the momentum operator and p denotes the momentum 

eigen values. Another example would be  : 

                                           
 mLZ 



 
    

Where Lz is the z-component of angular momentum operator and 

m is the azimuthal quantum number.
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Applications of Schrodinger’s wave equation 

1. For a Particle in an one-dimensional potential well of 

infinite depth (Particle in a box) 

 

Consider a particle of mass ‘m’ 

moving freely  in  x- direction in the 

region from x=0 to x=a. Outside  this 

region potential energy ‘V’ is infinity 

and within this region V=0. Outside the 

box Schrodinger’s wave equation is 

  )1..(..........0
8

2

2

2

2





E

h

m

x


 

This equation holds good only if  =0 for all points outside the 

box i.e., 0
2
 , which means that the particle cannot be found at 

all outside the box. Inside the box V = 0, hence the Schrodinger’s 

equation is given by, 
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Discussion of the solution 

The solution of the above equation 2 is given by 

    )4(..........sincos kxBkxA   

Where A & B are constants which depending on the boundary 

conditions of the well. 

 

Now apply boundary conditions for this, 

Condition: I   at x =0,  = 0.   

Substituting the condition I in the equation 4, we get   A =0 and B 0.   

(If B is also zero for all values of x, ψ is zero. This means that the 

particle is not present in the well.) 

Now the equation 4 can be written as )5(..........sin kxB  

 

Condition: II  at x =a,  = 0  

Substituting the condition II in equation 5 we get  

   0= B sin(ka) 

   
2

22
2

0sin

,0 Since

a

n
k

a

n
k

nka

ka

B

















 

 where,n= 1,2,3……………. 
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Substitute the value of k
2
 in equation (3). 

    
)6......(..........

8

8

2

22

2

22

2

2

ma

hn
E

a

n

h

Em






 

The equation (6) gives energy values or Eigen value of the 

particle in the well. When n=0,  n = 0. This means to say that the 

electron is not present inside the box, which is not true.  Hence the 

lowest value of ‘n’ is 1.  

 The lowest energy corresponds to ‘n’=1 is called the zero-point 

energy or Ground state energy.    

                                    
2

2

int
8ma

h
E pozero   

All the states of n  1 are called excited states. 

 

To evaluate B in equation (3), one has to perform normalization 

of wave function. 

 

Normalization of wave function: 

Consider the equation, xkxB
a

n
Bsin sin


   

The integral of the wave function over the entire space in the 

box must be equal to unity because there is only one particle within 

the box, the probability of finding the particle is 1. 
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      

a

dx
0

2
1  

                            
2 2

0

sin 1
a n

B xdx
a


  

     But   2cos1
2

1
sin 2   

     

a
B

aB

n
n

a
a

B

a

xn

n

a
x

B

dx
a

xn
dx

B

dx
a

xnB

a

a a

a

2

1
2

102sin
22

1
2

sin
22

1
2

cos
2

1̀
2

cos1
2

2

2

0

2

0 0

2

0

2





















































 














 

 

Thus the normalized wave function of a particle in a one-

dimensional box is given by,  

    x
a

n

a
n 











sin

2
   where, n=1,2,3…… 

 

    This equation gives the Eigen functions of the particle in the box.  
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The Eigen functions for n=1,2,3.. are as follows. 

    

x
aa

x
aa

x
aa





































3
sin

2

2
sin

2

sin
2

3

2

1

 

Since the particle in a box is a quantum mechanical problem we 

need to evaluate the most probable location of the particle in a box 

and its energies at different permitted state.  

Let us consider the three lowest energy solutions: 

Case (1):  n=1 

This is the ground state and the particle is normally found in this 

state.  For n=1, the Eigen function is 

     x
aa











sin

2
1

 

In the above equation  =0 for both x=0 & x=a. But 1 has a 

maximum value for x=a/2.  

aa

a

aa

2
       and     

2

2
sin

2 2

11 







 

  

 

 

 

 Ψ1         

 

 

 

 
x=0        x=a/2     x=a x=0        x=a/2     x=a 

2

1  
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A plot of 
2

1  the probability density versus ‘x’ is as shown. From 

the figure, it indicates the probability of finding the particle at 

different locations inside the box. 

 
2

1 =0    at x = 0 and x = a, also 
2

1  is maximum at x = (a/2).  

This means that in the ground state the particle cannot be found at 

the walls of the box and the probability of finding the particle is 

maximum at the central region. The Energy in the ground state is 

given by   
2

2

1
8ma

h
E  . 

 

Case (2):  n=2 

This is the first excited state. The Eigen function for this state is 

given by  x
aa










2
sin

2
2  

Now, 2 =0 for the values  aax  and 
2

,0  

and 2 reaches maximum for the values 
4

3,
4

aax   

These facts are seen in the following plot.  

 

    

 

 

 

 

 

 

0x  
2

a
 

a  

4

a
 

4
3a

 

2  

0x  
2

a
 

a  

4

a
 

4
3a

3
4

a

 

2

2  



UNIT II – QUANTUM MECHANICS 
 

31 

 

From the figure it can be seen that  

      0
2

2   at x = 0, aa ,2  and a/2
2

2
  at  

4
3,

4
aax           

 

This means that in the first excited state the particle cannot be 

observed either at the walls or at the center.  The energy is 12 4EE  .  

Thus the energy in the first excited state is 4 times the zero point 

energy.  

 

Case 3: n =3. 

This is the second excited state and the Eigen function for this state 

is given by 

x
aa










3
sin

2
3  

Now, 3 =0 for the values  aaax ,
3

2,
3

,0  

and  2 reaches maximum  
a

2
 at 

6
5,

2
,

6
aaax   

 

 

 

                                                                         

 

                                                                 
                                                                 

 

 

 

3 

0x
 

ax 
 

0x
 

ax 
 

2

3

 2
a

6
a

6
a

2
a 5

6
a5

6
a

3
a

3
a 2

3
a2

3
a
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2

3 =0 for the values  aaax ,
3

2,
3

,0
 
and 

2

3 reaches maximum  2/a    at 
6

5,
2

,
6

aaax   

at which the particle is most likely to be found.
  

The energy corresponds to second excited state is given by 
13 9EE 

.  

 

2. Free Particle: 

 

Free particle means, it is not under the influence of any kind of 

field or force. Thus, it has zero potential, i.e., V=0 over the entire 

space. Hence Schrodinger’s equation becomes, 

                                   

2 2

2 2

2

2 2

8
0

8

m
E

x h

h
E

m x






 
  



  
  

  

 

The above equation holds good for a particle for which the 

potential V=0 over the entire space (no boundaries at all). 

Since, for a free particle, V=0 holds good everywhere, we can 

extend the case of particle in an infinite potential well to the free 

particle case, by treating the width of the well to be infinity, i.e., by 

allowing a = . 

We have the equation for energy Eigen values for a particle in an 

infinite potential well as,

        

2 2
.

28

n h
E

ma


        

Where n = 1, 2, 3…
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Rearranging, we have,                  Em
h

a
n 2

2
  

Here, we see that, for a particle with constant energy E but 

confined in the well ’n’ depends solely on ‘a’. In the limiting case 

when a = , it also follows that n = , which essentially means 

that free particle can have any energy Eigen values or possible 

values of energy are infinite in number. Hence as, a  , n  . 

Keeping in mind the energy level representation, we say that the 

permitted energy values are continuous not discrete. 
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Q.No Sample Questions CO 

1.  State De Broglie hypothesis. 1 

2. What is wave function? Give its physical significance 

and properties. 

1 

3. State Heisenberg’s uncertainty principle. By applying 

Heisenberg’s uncertainty principle, illustrate the 

broadening of spectral lines.   

1&2 

4. What are Eigen functions and Eigen values ?  1 

5. Setup time independent one-dimensional Schrodinger’s 

wave equation for a matter wave. 

1 

6. Apply the time independent Schrodinger’s wave 

equation to find the solutions for a particle in an 

infinite potential well of width ‘a’. Hence obtain 

normalized wave function. 

1&2 

7 Solve the Schrodinger’s wave equation for a free 

particle. 

1&2 

8 Set up the differential equation for a particle in a 1D 

well of finite depth and arrive at an Eigen Value 

expression. 

2 
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PNo. Problems CO 

1. Calculate the de Broglie wavelength associated 

with a proton moving with a velocity equal to 

(1/20)
th 

 of the velocity of light. 

To be found: de Broglie wavelength, λ 

Solution: 

34

14

27 8

6.625 10
2.64 10

1.67 10 (1/ 20) 3 10

h
m

mv









   

   

 

3 

2. An electron and a proton are accelerated through 

the same potential difference. Find the ratio of 

their de Broglie wavelengths. 

To be found: Ratio of de Broglie wavelength, λ 

Solution: 

De Broglie Wavelength, λ 

2

h

mE
   ,  

1

m
  

For electron, 
1

e

e
m

          For proton, 

1
p

p
m

   

Ratio of De Broglie Wavelengths, 
pe

p e

m

m




   

 

3 
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3. Compare the energy of a photon with that of a 

neutron when both are associated with 

wavelength of 1A
o
. Given that the mass of 

neutron is 1.67 10
-27

kg. 

To be found: Comparison of energy of photon 

with that of neutron 

Solution: 

Energy of neutron,  

2 2 34 2

21

2 10 2 27

(6.625 10 )
13.1 10

2 2 2 (1 10 ) 1.67 10
n

P h
E J

m m





 


    

   

=0.082eV 

Energy of photon, 

34 8

16

10

6.625 10 3 10
19.89 10

1 10
p

hc
E J









  
   



=12421.9eV 

Ratio of  energies, 51.5148 10
p

n

E

E
   

3 

4. An electron has a speed of 4.8 x 10
5 

m/s accurate 

to 0.012 %. With what accuracy with which its 

position can be located. 

To be found: Uncertainty in position, Δx 

Solution: 

Uncertainty principle is given by,
4

h
x p


    

 

3 
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Uncertainty in speed,  

Δv = 4.8 x 10
5
 x 

0.012

100
= 57.6m/s 

Uncertainty in position,

34

6

31

6.625 10
1 10

4 4 3.14 9.1 10 57.6

h
x m

m v








    

    
 

5.  The inherent uncertainty in the measurement of 

time spent by Iridium-191 nuclei in the excited 

state is found to be 1.4x10
-10

 s. Estimate the 

uncertainty that results in its energy in the excited 

state. 

To be found: Uncertainty in energy, ΔE 

Solution: Uncertainty principle is given by,

4

h
E t


     

34

25

10

6.625 10
3.77 10

4 4 3.14 1.4 10

h
E J

t








    

   
 

3 

6. The position and momentum of 1 keV electron 

are simultaneously determined and if its position 

is located within 1Å. What is the percentage of 

uncertainty in its momentum?      

To be found: Percentage of uncertainty in 

momentum of electron, Δp 

3 
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Solution: 

Uncertainty principle is given by,
4

h
x p


    

 Uncertainty in momentum, 

34

24

10

6.625 10
0.53 10 . /

4 4 3.14 1 10

h
p kg m s

x








    

   
Momentum, 

31 16 232 2 9.1 10 1 10 1.707 10 /p mE kgm s           

 Percentage of uncertainty in momentum of 

electron, 100 3.1
p

p


   

7. Show that the energy Eigen value of a particle in 

second excited state is equal to 9 times the zero 

point energy. 

To be found: Energy Eigen value for second 

excited state is equal to 9 times the zero point 

energy. 

Solution: Energy Eigen value equation is given 

by,
2 2

28

n h
E

ma
  

n=1, zero-point energy state, 
2

1 28

h
E

ma
  

n=3, second excited state, 
2

3 12

9
9

8

h
E E

ma
 

 

3 
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8. An electron is bound in a one-dimensional 

potential well of width 1Å, but of infinite height. 

Find the energy value for the electron in the 

ground state.    

To be found: Energy Eigen value 

Solution:  

Energy Eigen value equation is given by, 

2 2

28

n h
E

ma
  

For n=1, ground state energy,

  

 

2
34

1 2
31 10

6.625 10
37.65

8 9.1 10 10
E eV



 


 

  

 

3 

9. An electron is bound in one dimensional potential 

well of infinite potential of width 0.12 nm. Find 

the energy values in the ground state and also the 

first two exited state. 

To be found: Energy Eigen value 

Solution:  

Energy Eigen value equation is given by, 

2 2

28

n h
E

ma
  

For n=1, ground state energy, 

3 
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 

 

2
34

1 2
31 9

6.625 10
26.16

8 9.1 10 0.12 10
E eV



 


 

   

 

For n=2 and 3,first and second excited state,                                      

2 1
4 104.61E E eV 

  

3 1
9 235.44E E eV 

 
10. An electron is trapped in a potential well of a 

width 0.5nm. If a transition takes place from the 

first excited state to the ground state find the 

wavelength of the photon emitted. 

To be found:  

Wavelength of the photon emitted, λ 

Solution:  

For n=1, ground state energy, 

 

 

2
34

19

1 2
31 9

6.625 10
2.41 10 1.507

8 9.1 10 0.5 10
E J eV





 


   

   

For n=2,first excited state,     

   

19

2 1
4 9.64 10 6.025E E J eV   

  
Energy difference,                 

 

19

2 1
  –  7.23 10 4.518E E E J eV    

  
Wavelength of the photon emitted , 

34

1

8

9

6.625 10 3 1

7.

0
2

23 10
74.8

hc
nm

E J






  
  


  
                 

3 
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    Things to think about! (CO3) 

1. Taking Planck’s law as the starting point derive Rayleigh –

Jeans law in the limit  of high λ. 

2. How can we naturally reconcile the dual Wave and Particle 

nature of matter ? 

3. Is there any connection between the position – momentum and 

energy-time uncertainty relationship? Discuss.  

4. Is the derivation for particle in a box done above valid for 

highly energetic relativistic particles ? Discuss.   

5. With respect to the particle in a box problem, find out what is 

tunneling. What is its utility in different engineering domains?  

  


