			Semester: I/I				
			ENGINEERING PH				
		-	(Theory and Prac	tice)			
Course Code	:	21PH12/22		CIE	:		0 Marks
Credits: L: T:P	:	3:0:1		SEE	:		0 Marks
Total Hours	:	45L + 30P		SEE Duration	:	3 H	Iours
			Unit-I				9 Hrs
Elasticity and Osc	illat	ions:					
Elasticity: Hooke'	s la	w (qualitative), be	ending of beams, sing	le cantilever (deriva	ation), to	rsion of a cylinde
torsion pendulum,	Nun	nerical problems.					
Oscillations: Dan	nped	and forced har	rmonic oscillations:	differential equatio	n fo	or da	amped and force
oscillations, LCR c	ircu	it (qualitative), ele	ectrical resonance, Nur	nerical problems.			
			Unit – II	_			9 Hrs
Quantum mechan	ics						
Blackbody radiatio	n, N	latter waves, Grou	up velocity and phase	velocity, Heisenberg	g's U	ncer	tainty principle ar
its application, Bro	ade	ning of spectral li	nes, One dimensional	time independent S	Schro	ding	er's wave equation
			en functions and Eige	-		-	-
-		-	umerical problems.				
*			Unit –III				9 Hrs
Electrical Conduc	tivit	y in solids:					
Postulates of Class	ical	free electron theor	ry (CFET) and Quantu	m free electron theo	ry (C	QFE1	Γ), Density of stat
			rmi factor. Fermi ene		-		-
	-		ach), electron concent				-
-			band and hole conc				
			ors: Variation of car	-			
			s and semiconductors,				
			litative treatment of Ir	-		one o	dimensional infini
• •		-	-Mossotti equation(de				
unuj or upores (E.			Unit –IV		pro	Jiem	9 Hrs
Lasers and Optica	l fil						
-			ter, Energy density in	terms of Einstein's o	coeff	icien	ts, Laser requisite
			eye and skin surgery, N				, 1
			n optical fibre, types o				
• •	nuat	ion, Point to Poin	t communication, appl	ications in sensors, j	phase	e mo	dulators, Numeric
problems.							0
El. 4	0 4		Unit –V				9 Hrs
			rization Techniques				
			$\mathbf{E} \stackrel{\mathbf{E}}{\leftarrow} \mathbf{E} \stackrel{\mathbf{B}}{\leftarrow} \mathbf{F}$ fields: $\stackrel{\mathbf{E}}{\leftarrow} \mathbf{F}$				
· •	-		gle (qualitative), Mag	÷.		-	
Lorentz force equa	ion,	Application of cr	ossed <i>E</i> & <i>B</i> configur	ation as a velocity se	elect	or, E	lectron & Magnet

Lorentz torce equation, Application of crossed $\vec{E} \& \vec{B}$ configuration as a velocity selector, Electron & Magnetic lens, Applications in Scanning Electron Microscope, Scanning Tunnelling Electron Microscope. Numerical problems.

Sl. No.	Lab Experiments
1	Determination of Young's modulus of the given material.
2	Determination of rigidity modulus of the given material.
3	Determination of spring constant, effective spring constants using springs in series and parallel.
4	Determination of wavelength of the given laser.
5	Determination of hall coefficient and carrier concentration of a given semiconductor.
6	Determination of the band gap of a given thermistor.
7	Determination of dielectric constant of a material using charging and discharging of the given capacitor.
8	Determination of numerical aperture, acceptance angle and fiber loss of a given optical fiber.
9	Fermi energy of a material.
10	Verification of Stefan's Law.

Course	Course Outcomes: After completing the course, the students will be able to:-								
CO1	Understand the basic principles of oscillator, elastic properties of materials, quantum mechanics,								
	electrical properties of metals & semiconductors, dielectric properties of materials and behavior of								
	charged particles in electric and magnetic fields.								
CO2	Apply the Physics principles to solve Engineering problems in elasticity, oscillation, applied optics, and								
	semiconductors.								
CO3	Analyze and solve complex problems using critical thinking.								
CO4	Design and develop models by simulation using open-source tools and validate with real time								
	experimentation.								

Refere	nce Books
1	Engineering Physics, Hitendra K Malik and A K Singh, 2010, Tata McGraw Hill Publication, ISBN: 9780070671539.
2	Engineering Physics, R K Gaur and S L Gupta, 2011, DhanpatRai Publications, ISBN: 9788189928223.
3	A Textbook of Engineering Physics, M. N. Avadhanulu and P G Kshirsagar, 2019, S. Chand publications, ISBN : 978-93-528-3399-3.
4	Physics for Degree students, C.L. Arora and Dr. P. S. Hemne, revised 2010, S Chand, ISBN: 9788121933506.
5	Fundamentals of Physics- Resnick, Halliday and Walker, 9 th Edition, 2011, John Wiley & Sons, ISBN: 9780470547915.
6	Introduction to Electrodynamics, David J. Griffiths, 4 th Edition, 2012, Pearson publishers, ISBN.978-93- 325-5044-5.

	ASSESSMENT AND EVAI	LUATION PATTERN			
СЕ					
WEIGI	ITAGE	50%	50%		
QUIZZES					
Quiz-I		Each quiz is evaluated for 10 marks			
Quiz-II		adding up to 20 MARKS.			
THEORY COURSE (Bloom's Taxonomy Levels: F Creating) Test – I Test – II	Remembering, Understanding, A	Applying, Analyzing, Evaluating, and Each test will be conducted for 50 Marks adding upto 100 marks. Final test marks will be reduced to 40 MARKS			
EXPERIENTIAL LEARNIN	١G	40			
Case Study-based Teaching-L	earning	10			
	ation (Topics from the current nology and augmenting the	20			
Video based seminar (4-5 min	utes per student)	10			
MAXIMUM MARKS FOR	THE THRORY	100 MARKS	100 MARKS		
PRACTICALS CIE Conduction: 25 Lab test: 05 Experiential Learning: 20 Total : 50	SEE	50			
TOTAL MARKS FOR THE	COURSE	150	150		

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1				2						3
CO2	3	2										
CO3	3	3	2	2	2				2			
CO4	3	3	3	2	3	2	2		2	3	3	

High-3: Medium-2 : Low-1