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UNIT II – QUANTUM MECHANICS 

 
Introduction: 

At the beginning of the 20
th

 century, Newton’s laws of motion 

were able to successfully describe the motion of the particles in 

classical mechanics (the world of large, heavy and slow bodies) and 

Maxwell’s equations explained phenomena in classical 

electromagnetism. However the classical theory does not hold in the 

region of atomic dimensions. It could not explain the stability of atoms, 

energy distribution in the black body radiation spectrum, origin of 

discrete spectra of atoms, etc. It also fails to explain the large number 

of observed phenomena like photoelectric effect, Compton Effect, 

Raman Effect, Quantum Hall effect, superconductivity etc. The 

insufficiency of classical mechanics led to the development of 

quantum mechanics (QM).  

Quantum mechanics gives the description of motion and 

interaction of particles in the small scale atomic system where the 

discrete nature of the physical world becomes important. With the 

application of quantum mechanics, most of the outstanding problems 

have been solved. The direct implications of QM though very subtle 

have dramatic effect in our day to day life.  For example, QM 

successfully introduced the concept of discrete energy which led to the 

conception and advancements in quantum computing, it also paved way 

for efficient long distance transfer of large quantities of data 

electronically. By understanding the electronic spin and related atomic 

properties, QM has aided in realizing energy efficient materials that can 

be applied to consumable electronic equipment and in commercial 

transport vehicles like Hyper loop, Maglev trains among others.   

Black Body Radiation 

        Black-body radiation is the type of electromagnetic radiation 

emitted by a black body (an opaque and non-reflective body) held at 

constant, uniform temperature. In nature there are no perfect black 

bodies.  
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Black Body Spectrum: It is a graph showing the variation of the 

energy of the black body radiations as a function of their wavelengths 

or frequencies. The energy distribution in the black body spectrum is 

explained by Wien’s distribution law in the lower  wavelength region 

and Rayleigh Jeans law explains the energy distribution in the larger 

wavelength region. 

Wien’s law: 
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Fig 1.1: Blackbody Radiation spectrum 

 

Neither  Wien’s law nor Rayleigh- jean’s law could explain the energy 

distribution in the entire blackbody spectrum. The energy distribution 

in the entire blackbody spectrum was successfully explained by Max. 

Planck by quantum Theory.

 

 

 dTkdE 48 



Unit 2: Quantum Mechanics 

 

Planck’s quantum theory 

The energy distribution in the black body radiation spectrum was 

successfully explained by Max Planck in the year 1900. According to 

Planck’s quantum theory thermal energy is not emitted or absorbed 

continuously, but it is emitted or absorbed in discrete quantities called 

quanta. Each quanta has an energy ‘hν’ where h is the Planck’s 

constant. Applying the Planck’s quantum theory an expression for the 

energy distribution in the black body spectrum was obtained and it is 

called Planck’s formula.  

The Planck’s formula is as follows 
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Where k is the Boltzmann’s constant; h- Planck’s constant and c is the 

velocity of light, λ is the wavelength of the black-body radiation and ω 

is the angular frequency of light. 

 

Photoelectric effect: 

When the light of a suitable wavelength shines on certain 

materials, then electrons are spontaneously emitted from the surface of 

material. It can be observed in any material but most readily in metals 

and good conductors. This phenomenon is known as the photoelectric 

effect.   
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The materials that exhibit photoelectric effect are called 

photosensitive materials and the emitted electrons are called 

photoelectrons. Heinrich Hertz first observed this phenomenon in 1887.  

The electrons are emitted only when the photons reach or 

exceed a threshold frequency (energy) and below that threshold, no 

electrons are emitted from the metal regardless of the light intensity or 

the length of time of exposure to the light. To explain this phenomenon, 

Albert Einstein proposed that light be seen as a collection of discrete 

bundles of energy (photons), each with energy hυ, where υ is the 

frequency of the light that is being quantized and h is known as the 

Planck constant. 

Einstein’s photoelectric equation: 

Einstein, in 1905, proposed that the light energy is localized in 

small packets similar to the Planck’s idea of quanta, and named such 

packets as photons. According to Einstein, in photoelectric effect one 

photon is completely absorbed by one electron, which thereby gains the 

quantum of energy and may be emitted from the metal.  

 

Thus the photon energy is used in the following two parts: 

i). A part of its energy is used to free the electron from the atoms of the 

metal surface. This energy is known as a photoelectric work function of 

metal (Wo) 

ii) The other part is used in giving kinetic energy (½ mv
2
) to the 

electron.  
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Thus     
21

2
o

h W mv        

where ‘v’ is the velocity of the emitted electron.  

This equation is known as Einstein’s photoelectric equation.  

When the photon’s energy is of such a value that it can just liberate the 

electron from metal, then the kinetic energy of the electron will be zero. 

Then the above equation reduces to        
oo Wh  ,    where 

o  is 

called the threshold frequency.  

 

Threshold frequency is defined as the minimum frequency which can 

cause photoelectric emission. Below this frequency no emission of 

electron takes place.  

 

Compton Effect:  

When a monochromatic beam of high frequency radiation (X – rays, γ 

– rays, etc.) is scattered by a substance, then the scattered radiation 

contains two components  - one having a lower frequency or greater 

wavelength called as modified radiation and the other having the same 

frequency or wavelength called as unmodified radiation. This 

phenomenon is known as Compton effect and was discovered by Prof. 

A.H. Compton in 1921.  The process of recoiling of electron and 

scattering of photon is as shown in the following figure:  
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Φ----- is the recoil angle 

θ------ is the scattering angle. 

 

  

Schematic diagram of Compton Effect 

 

 According to the quantum concept of radiation, the radiation is 

constituted by energy packets called photons. The energy of photon is 

hν, where h is Planck’s constant and ν is the frequency of radiation. 

The photons move with velocity of light c, possess momentum hν/c and 

obey all the laws of conservation of energy and momentum. According 

to Compton, the phenomenon of scattering is due to an elastic collision 

between two particles, the photon of incident radiation and the electron 

of the scatterer. When the photon of energy hν collides with the 

electron of the scatterer at rest, it transfers some energy to the electron, 

i.e., it loses the energy. The scattered photon will therefore have a 

smaller energy and consequently a lower frequency (ν
’
) or greater 

wavelength (λ
’
) than that of the incident photon. The observed change 

in frequency or wavelength of the scattered radiation is known as 

Compton Effect. In the scattering process, the electron gains kinetic 
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energy and thus recoils with a velocity v. The changed wavelength of 

the photon scattered through an angle θ is given by  

'

0

( ) [1 cos ]
h

m c
         

Wave and particle duality of radiation 

 To understand the wave and particle duality, it is necessary to 

know what a particle is and what a wave is. 

 A particle is a localized mass and it is specified by its mass, 

velocity, momentum, energy, etc. In contrast a wave is a spread out 

disturbance. A wave is characterised by its wavelength, frequency, 

velocity, amplitude, intensity, etc. It is hard to think mass being 

associated with a wave. Considering the above facts, it appears difficult 

to accept the conflicting ideas that radiation has a wave particle duality. 

However this acceptance is essential because the radiation exhibits 

phenomena like interference, diffraction, polarization, etc., and shows 

the wave nature and it also exhibits the particle nature in the black-

body radiation effect, photoelectric effect, Compton Effect etc.   

 Radiation, thus, sometimes behave as a wave and at some other 

time as a particle, this is the wave particle duality of radiation.   

 

De Broglie’s concept of matter waves. 

 Louis de-Broglie in 1924 extended the wave particle dualism of 

radiation to fundamental entities of physics, such as electrons, protons, 

neutrons, atoms, molecules, etc. de-Broglie put a bold suggestion that 

like radiation, matter also has dual characteristic, at a time when there 
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was absolutely no experimental evidence for wavelike properties of 

matter waves. de Broglie Hypothesis of matter waves is as follows. 

 In nature energy manifests itself in two forms, namely matter and 

radiation. 

 Nature loves symmetry. 

 As radiation can act like both wave and a particle, material 

particles(like electrons, protons, etc.) in motion should exhibit the 

property of waves.  

These waves due to moving matter are called matter waves or de-

Broglie waves or pilot waves.  

Wavelength of matter waves:  

The concept of matter waves is well understood by combining 

Planck’s quantum theory and Einstein’s theory. Consider a photon of 

energy E, frequency γ and wavelength λ.  

By Planck’s theory 



hc

hE   

By Einstein’s mass-energy relation 2mcE           

By equating and rearranging the above equations, we get 

                                                      p

h
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h
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Where, p is the momentum of the photon and h is a Planck’s constant. 
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Now consider a particle of mass m moving with a velocity v and 

momentum p. According to the do-Broglie hypothesis matter also has a 

dual nature. Hence the wavelength λ of matter waves is given by  

                       
p

h

mv

h
   

 This is the equation for the de-Broglie wavelength.  

 

De Broglie wavelength of an electron 

 Consider an electron of mass ‘m’ accelerated from rest by an 

electric potential V. The electrical work done (eV) is equal to the 

kinetic energy E gained by the electron. 
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Substituting the values of e, m and h, we get 

                          
12.28

2

oh
A

me


 

 

                         
12.28 oA

V
   

 

Note: Instead of a an electron, if a particle of charge ‘q’ is accelerated 

through a potential difference V, then 

mqV

h

2


 

 

Properties of matter waves and how they are different from 

electromagnetic waves 

 

1. Lighter the particle, greater would be the wavelength of matter 

waves associated with it. 

2. Smaller the velocity of the particle, greater would be the 

wavelength. 

3. For p = 0, λ is infinity ie., the wave becomes indeterminate. This 

means that matter waves are associated with moving particles only. 

4. Matter waves are produced by charged or uncharged particles in 

motion. Whereas electromagnetic waves are produced only by a 

moving charged particle. Hence matter waves are non – 

electromagnetic waves. 
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5. In an isotropic medium the wavelength of an electromagnetic wave 

is a constant, whereas wavelength of a matter wave changes with 

the velocity of the particle. Hence matter waves are non- 

electromagnetic waves. 

6. A particle is a localized mass and a wave is a spread out 

disturbance. So, the wave nature of matter introduces a certain 

uncertainty in the position of the particle.  

7. Matter waves are probability waves because waves represent the 

probability of finding a particle in space. 

 

Heisenberg’s uncertainty principle 

 Heisenberg’s uncertainty principle is a direct consequence of the 

dual nature of matter. In classical mechanics, a moving particle at any 

instant has a fixed position in space and a definite momentum which 

can be determined if the initial values are known (we can know the 

future if we know the present)  

 In wave mechanics a moving particle is described in terms of a 

wave group or wave packet. According to Max Born’s probability 

interpretation the particle may be present anywhere inside the wave 

packet. When the wave packet is large, the momentum can be fixed, but 

there is a large uncertainty in its position. On the other hand, if the 

wave packet is small the position of the particle may be fixed, but the 

particle will spread rapidly and hence the momentum (or velocity) 

becomes indeterminate. In this way certainty in momentum involves 

uncertainty in position and the certainty in position involves uncertainty 

in momentum.  
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Hence it is impossible to know within the wave packet where the 

particle is and what is its exact momentum. (We cannot know the 

future because we cannot know the present).  Thus we have 

Heisenberg’s uncertainty principle. 

 

 According to the Heisenberg’s uncertainty principle “It is 

impossible to specify precisely and simultaneously certain pairs of 

physical quantities like position and momentum that describe the 

behavior of an atomic system”. Qualitatively, this principle states that 

in any simultaneous measurement the product of the magnitudes of the 

uncertainties of the pairs of physical quantities is equal to or greater 

than h/4π (or of the order of h) 

Considering the pair of physical quantities such as position and 

momentum, we have 

    ΔpΔx ≥ h/4π                                 .….1 

Where Δp and Δx are the uncertainties in determining the momentum 

and the position of the particle.  Similarly, we have other canonical 

forms as  

     ΔEΔt ≥ h/4π     ……2 

     ΔJΔθ ≥ h/4π      ……3 

Where ΔE and Δt are uncertainties in determining energy and time 

while ΔJ and Δθ are uncertainties in determining angular momentum 

and angular position. 
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Illustration of Heisenberg’s uncertainty principle  

 

 Broadening of spectral lines 

When an atom absorbs a photon, it rises to the excited state and 

it will stay in the excited state for certain time called the lifetime. 

Lifetime of atoms in the excited levels is of the order of 10
-8

s. When 

the atom comes to the ground state it emits a photon of energy exactly 

equal to the energy difference between the two levels as shown in the 

figure 1.3. 
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Fig. 1.3. Line width for emitted photons 

The energy of the emitted photon is given by  

.................(1)
hc

E h


 
.
  

where h is a Planck’s constant, ν is the frequency, c is the velocity of 

light and λ is the wavelength. 

 

Differentiating equation (1) with respect to wavelength (λ), we get 

                                                 
2




hc
   

     



Unit 2: Quantum Mechanics 
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According to Heisenberg’s uncertainty principle, the finite lifetime Δt 

of the excited state means there will be an uncertainty in the energy of 

the emitted photon is given by 

        
t

h
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Substituting for ΔE from (2) and applying the condition of minimum 

uncertainty, we get 

    

2

hc

t
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   or         
2

4 c t





 


  

This shows that for a finite lifetime of the excited state, the measured 

value of the emitted photon wavelength will have a spread of 

wavelengths around the mean value λ.  

This uncertainty in the measured value of wavelength demands for very 

narrow spread, the lifetime of the excited state must be very high (of 

the order of 10
-3

s). Such excited levels are called Metastable states. 

This concept is adopted in the production of laser light.  

SCHRÖDINGER’S WAVE EQUATION  

 In1926 Schrödinger starting with de-Broglie equation (λ = h/mv) 

developed it into an important mathematical theory called wave 

mechanics which found a remarkable success in explaining the 

behavior of the atomic system and their interaction with 
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electromagnetic radiation and other particles. In water waves, the 

quantity that varies periodically is the height of water surface. In sound 

waves it is pressure. In light waves, electric and magnetic fields vary. 

The quantity whose variation gives matter waves is called wave 

function (ψ). The value of wave function associated with a moving 

body at a particular point x in space at a time t is related to the 

likelihood of finding the body there at a time. A wave function ψ(x,t) 

that describes a particle with certain uncertainty in position, moving in 

a positive x-direction with precisely known momentum and kinetic 

energy may assume any one of the following forms: 

Sin( ωt - kx) , cos( ωt - kx), e
i(ωt – kx)

, e
-i(ωt – kx)

 or some linear 

combinations of them.  

Schrödinger wave equation is the wave equation of which the wave 

functions are the solutions. It cannot be derived from any basic 

principles, but can be arrived at, by using the de-Broglie hypothesis in 

conjunction with the classical wave equation.  

 

Time Independent one dimensional Schrödinger wave 

equation(TISE)   

 In many situations the potential energy of the particle does not 

depend on time explicitly; the force that acts on it, and hence the 

potential energy vary with the position of the particle only. The 

Schrödinger wave equation for such a particle is time independent 

wave equation. Let ψ(x,t) be the wave function of the matter wave 

associate with a particle of mass m moving with a velocity v. The 

differential equation of the wave motion is as follows. 
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The solution of the Eq.(1) as a periodic displacement of time t is   

    ψ(x,t) =ψ0(x) e
-iωt

 …..(2) 

Where ψ0(x) is the amplitude of the matter wave. 

Differentiating Eq.2 partially twice w.r.t. to t, we get  
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Substituting Eq.3 in Eq.1    
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Substituting this in Eq4, we get 
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Substituting the wavelength of the matter waves λ=h/mv in Eq.6 we get  
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If E and V are the total and potential energies of the particle 

respectively, then the kinetic energy of the particle   

    
VEmvE  2

2

1
 

    )(222 VEmvm     

Substituting this in Eq.7, we get   

    )8.(..........0)(
8

2

2

2

2








VE

h

m

x  

Hence ψ is a function of x alone and is independent of time. This 

equation is called the Schrödinger time- independent one dimensional 

wave equation. 

Physical significance of the wave function 

The wave function ψ(x, t) is the solution of Schrödinger wave equation. 

It gives a quantum-mechanically complete description of the behavior 

of a moving particle. The wave function ψ cannot be measured directly 

by any physical experiment. However, for a given ψ, knowledge of 

usual dynamic variables, such as position, momentum, angular 

momentum, etc., of the particle is obtained by performing suitable 

mathematical operations on it. 

The most important property of ψ is that it gives a measure of the 

probability of finding a particle at a particular position.
 
ψ is  also called 

the probability amplitude. In general ψ is a complex quantity, 

whereas the probability must be real and positive. Therefore a term 

called probability density is defined. The probability density P (x,t)  is 

a product of the wave function ψ and its complex conjugate ψ
*
. 

   
*( , )P x t   

2
),( tx        
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Normalization of wave function 

 If ψ is a wave function associated with a particle, then    d2 is 

the probability of finding the particle in a small volume dτ. If it is 

certain that the particle is present in a volume τ then the total 

probability in the volume τ is unity i.e.,  


 12d . This is the 

normalization condition.  

In one dimension the normalization condition is  
x

dx 12  

Note: When the particle is bound to a limited region the probability of 

finding the particle at infinity is zero i.e., at x * is zero. 

 

Properties of wave function: 

The wave function ψ should satisfy the following properties to describe 

the characteristics of matter waves. 

1. ψ must be a solution of Schrödinger wave equation. 

2. The wave function ψ should be continuous and single valued 

everywhere. Because it is related to the probability of finding a 

particle at a given position at a given time, which will have only 

one value. 

3. The first derivative of ψ with respect to x should be continuous and 

single valued everywhere, since it is related to the momentum of 

the particle which should be finite. 

4. Ψ must be normalized so that ψ must go to 0 as x  , so that 

 d
2

over all the space be a finite constant. 
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Eigen functions and Eigen values 

 The Schrödinger wave equation is a second order partial 

differential equation; it will have many mathematically possible 

solutions (ψ). All mathematically possible solutions are not physically 

acceptable solutions. The physically acceptable solutions are called 

Eigen functions (ψ).  

The physically acceptable wave functions ψ has to satisfy the following 

conditions: 

1. ψ is single valued.  

2. ψ and its first derivative with respect to its variable are 

continuous everywhere. 

3. ψ is finite everywhere.  

       Once the Eigen functions are known, they can be used in 

Schrödinger wave equation to evaluate the physically measurable 

quantities like energy, momentum, etc., these values are called Eigen 

values. In an operator equation  
^

O  where 
^

O  is an operator for 

the physical quantity and ψ is an Eigen function and λ is the Eigen 

value.  For example :             
  

 EH 


                           
Where H is the total energy (Hamiltonian) operator, ψ is the Eigen 

function and E is the total energy in the system. We can have similar  

equations for the momentum      
 pP 



                      
 

Where P is the momentum operator and p denotes the momentum eigen 

values. Another example would be  : 

                                           
 mLZ 



 
                                                            

Where Lz is the z-component of angular momentum operator and m is 

the azimuthal quantum number.
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Applications of Schrodinger’s wave equation 

1. For a Particle in an one-dimensional potential well of infinite 

depth (Particle in a box) 

 

Consider a particle of mass ‘m’ moving 

freely  in  x- direction in the region from 

x=0 to x=a. Outside  this region potential 

energy ‘V’ is infinity and within this 

region V=0. Outside the box 

Schrodinger’s wave equation is 

  )1..(..........0
8

2

2

2

2





E

h

m

x


 

This equation holds good only if  =0 for all points outside the box i.e., 

0
2
 , which means that the particle cannot be found at all outside 

the box. Inside the box V = 0, hence  the Schrodinger’s equation is 

given by, 

 

 



Unit 2: Quantum Mechanics 

 

Discussion of the solution 

The solution of the above equation is given by 

    )4(..........sincos kxBkxA   

where A & B are constants  which depending on the boundary 

conditions of the well. 

Now apply boundary conditions for this, 

 

Condition: I   at x =0,  = 0.   

Substituting the condition I in the equation 4, we get   A =0 and B 0.   

(If B is also zero for all values of x, ψ is zero. This means that the 

particle is not present in the well.) 

Now the equation 3 can be written as )5(..........sin kxB  

Condition: II  at x =a,  = 0  

Substituting the condition II in equation 5 we get  

   0= B sin(ka) 

   
2

22
2

0sin

,0 Since

a

n
k

a

n
k

nka

ka

B

















 

 where,n= 1,2,3……………. 

Substitute the value of k
2
 in equation (3). 
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The equation (6) gives energy values or Eigen value of the particle in 

the well. When n=0,  n = 0. This means to say that the electron is not 

present inside the box, which is not true.  Hence the lowest value of ‘n’ 

is 1.  

 The lowest energy corresponds to ‘n’=1 is called the zero-point 

energy or Ground state energy.                                       

2

2

int
8ma

h
E pozero   

All the states of n  1 are called excited states. 

To evaluate B in equation (3), one has to perform normalization of 

wave function. 

 

Normalization of wave function: 

Consider the equation, xkxB
a

n
Bsin sin


   

The integral of the wave function over the entire space in the box must 

be equal to unity because there is only one particle within the box, the 

probability of finding the particle is 1. 

      

a

dx
0

2
1  

                            
2 2

0

sin 1
a n

B xdx
a


  

     But   2cos1
2

1
sin 2   
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Thus the normalized wave function of a particle in a one-dimensional 

box is given by,  

    x
a

n

a
n 











sin

2
   where, n=1,2,3……  

This equation gives the Eigen functions of the particle in the box. The 

Eigen functions for n=1,2,3.. are as follows. 

    

x
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2
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2
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2
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Since the particle in a box is a quantum mechanical problem we need to 

evaluate the most probable location of the particle in a box and its 

energies at different permitted state.  
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Let us consider the three lowest energy solutions: 

 

Case (1):  n=1. 

-------------------------------------------------------------------------------------- 

This is the ground stat and the particle is normally found in this state. 

For n=1, the Eigen function is 

     x
aa











sin

2
1  

In the above equation  =0 for both x=0 & x=a. But 1 has a 

maximum value for x=a/2.  
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2
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A plot of 
2

1  the probability density versus ‘x’ is as shown. From the 

figure, it indicates the probability of finding the particle at different 

locations inside the box. 

 
2

1 =0    at x = 0 and x = a, also 
2

1  is maximum at x = (a/2).  

x=0        x=a/2     x=a x=0        x=a/2     x=a 

2

1  
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This means that in the ground state the particle cannot be found at the 

walls of the box and the probability of finding the particle is maximum 

at the central region. The Energy in the ground state is given by   

2

2

1
8ma

h
E  . 

Case 2:   n =2  

This is the first excited state. The Eigen function for this state is given 

by  x
aa










2
sin

2
2  

Now, 2 =0 for the values  aax  and 
2

,0  

and 2 reaches maximum for the values 
4

3,
4

aax   

These facts are seen in the following plot.  

 

    

 

 

 

 

 

 

From the figure it can be seen that 0
2

2   at x = 0, aa ,2  

and a/2
2

2
  at  

4
3,

4
aax           

This means that in the first excited state the particle cannot be observed 

either at the walls or at the center.  The energy is 12 4EE  .  
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Thus the energy in the first excited state is 4 times the zero point 

energy.  

Case 3: n =3. 

This is the second excited state and the Eigen function for this state is 

given by 

 x
aa










3
sin

2
3  

now, 3 =0 for the values  aaax ,
3

2,
3

,0  

and  2 reaches maximum  
a

2
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6
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2

3 =0 for the values  aaax ,
3

2,
3

,0
 
and 

2

3 reaches maximum  2/a    at 
6

5,
2

,
6

aaax    

  at which the particle is most likely to be found. 
  

The energy corresponds to second excited state is given by 13 9EE  .  
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2. Free Particle: 

 

Free particle means, it is not under the influence of any kind of field or 

force. Thus, it has zero potential, i.e., V=0 over the entire space. 

Hence Schrodinger’s equation becomes, 

                                   

2 2

2 2

2

2 2

8
0

8

m
E

x h
h

E
m x






 
  


  

  
  

 

The above equation holds good for a particle for which the potential 

V=0 over the entire space (no boundaries at all). 

Since, for a free particle, V=0 holds good everywhere, we can extend 

the case of particle in an infinite potential well to the free particle case, 

by treating the width of the well to be infinity, i.e., by allowing a = . 

We have the equation for energy Eigen values for a particle in an 

infinite potential well as,

        

.
8 2

22

ma

hn
E 

        

Where n = 1, 2, 3… 

Rearranging, we have,                  Em
h

a
n 2

2
  

Here, we see that, for a particle with constant energy E but confined in 

the well ’n’ depends solely on ‘a’. In the limiting case when a = , it 

also follows that n = , which essentially means that free particle can 

have any energy Eigen values or possible values of energy are infinite 

in number. Hence as, a  , n  . Keeping in mind the energy level 

representation, we say that the permitted energy values are continuous 

not discrete. 
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3. Three Dimensional Well of infinite depth (Particle in a 3D infinite well) 

The generalization of the one dimensional particle in a box result to the 

three dimensional case is quite straight forward. The Time Independent 

Schrodinger Equation is now  

 (-ђ
2
/2m)[∂

2
ψ/∂x

2
  + ∂

2
ψ/∂y

2 + 
∂

2
ψ/∂z

2 
] + V(x,y,z)ψ  = (Ex + Ey + Ez)ψ 

The potential V(x,y,z) = 0    within the well i.e    0 < x,y,z < a  

       and          V(x,y,z) = ∞  outside the well . 

Thus, within the well, the differential equation can be easily broken 

down into 3 independent differential equations along the 3 axes which 

are :  

∂
2
ψ/∂x

2 
+ (2mEx/ђ

2
)ψ = 0 , 

∂
2
ψ/∂y

2 
+ (2mEy/ђ

2
)ψ = 0,  

∂
2
ψ/∂z

2 
+ (2mEz/ђ

2
)ψ = 0 …………(2) 

The solutions for each of the three equations above are similar giving 

us finally :   E  =  Ex+Ey+Ez          =  (h
2
/8ma

2
)[nx

2
 + ny

2
 + nz

2
] ……..(3) 

4.  Square Well of finite depth in one dimensions. 

  Motivation for studying square well potential of finite depth : In 

infinite square well potential, we know  that the electrons never leave 

the well. This means that the probability of finding the particle at x= 0 

and x = a     has to be zero.  

  So, V(0) = V(a) = ∞     and       ψ(0) = ψ(a) = 0 

1. A more realistic description of the confining potential is when 

depth of the well is finite. This ALLOWS  the particle to be 

outside the well/box also, with finite probability(This is called 

Quantum Tunneling) 
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2. What would happen if the particle’s kinetic energy (KE) is 

higher than  the potential energy(V) outside the well ?  This can 

be modeled only by a well of finite depth, as shown in the 

figure below. 

 

 

Consider the Time Independent Schrodinger Equation:   

(-ђ
2
/2m)∂

2
ψ/∂x

2
  + V(x)ψ  = Eψ  …………(1) 

Where ψ is the wave function we want to find, ђ = h/2π is also called 

the reduced Planck’s constant, V(x)  is the potential energy at the point 

x and  E is the total energy of the particle. 

 Any  Square well potential can  be described by 3 different regions, as 

given below : 

 

REGION I x < -0.5a V(x) = Vo 

            REGION II -0.5a < x < 0.5a V(x) = 0 

            REGION III x  >  0.5a V(x) = Vo 
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Rewriting Equation 1 we get:   

∂
2
ψ/∂x

2
   =  (2m/ђ

2
)(V(x) – E)ψ      ….…………………….(2) 

 

In region II,  V(x) – E < 0,  

 hence   ∂
2
ψ/∂x

2
   =  -k

2
ψ     ………..(3)  

 Where  k
2
 = (2m/ђ

2
)(E - V(x)) 

As V(x) = 0 in region II,      k
2
 = 2mE/ђ

2  
 where k is a real number.

   
 

ψII(x) = Acos(kx) + Bsin(kx)    or equivalently     ψII(x) = Ae
ikx

 + Be
-ikx

 ….(4)  

     

In regions I and III,  E < V(x) (This is the classically forbidden region 

for the particle(that is the classical particle cannot be found there) as 

kinetic energy is negative, which is not possible in classical mechanics. 

However this is possible in Quantum mechanics.  

Therefore   ∂
2
ψ/∂x

2
   =  α

2
ψ     ……………………………………..(5) 

where α is real, α
2
 = (2m/ђ

2
)(Vo – E)    ……………………………(6) 

 The solution in these two regions is given by : 

ΨIII (x) = Ce
αx

  +  De
-αx

             ……………………………………..(7) 

ΨI (x)  =  Ee
αx

  +  Fe
-αx                    

.....................................,,,,.................(8) 

As x → ∞,  Ce
αx

  will diverge (the amplitude of the wave-function 

becomes infinity), unless  C = 0. 

 Therefore we set  C = 0  and we get ΨIII (x) = De
-αx

   ..(9) 

As x → - ∞,  

Fe
-αx

  will diverge, unless F  = 0. Thus ΨI (x)  =  Ee
αx

   (10) 
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The graphical illustration of these wave functions region wise is shown 

in the diagram below:   

 
 

The above two equations (9) and (10) are required as otherwise the 

solutions will  blow up (diverge) and will therefore not be 

normalizable. 

So,  ΨI (x)  =  Ee
αx

 ,    ψII(x) = Acos(kx) + Bsin(kx),    ΨIII (x) = De
-αx    

….(11)  

 

Now, we have to match the wave-functions as well as their derivatives 

at the boundaries of these different regions. Thus: 

ΨI (-a/2)  =  ΨII (-a/2)   and (dΨI/dx)x= -a/2  =  (dΨII/dx)x= -a/2    ……..(12) 

ΨII (a/2)  =  ΨIII (a/2)    and (dΨII/dx)x=a/2  =  (dΨIII/dx)x=a/2  ..……...(13) 

 

There are two types of functions inside the well, one with odd and one 

with even parity. Odd parity is defined as  f(x) = -f(-x), while even 

parity is defined as f(x) = f(-x). For odd parity, we have to choose  sine 

solution, as : sin(x) = -sin(-x)  

Therefore   ψII(x)=Bsin(kx) …………………….……….(14) 

Whereas for the even parity solution, we have to choose cosine soln as 

cos(x) = cos(-x) .Thus  ψII(x) = Acos(kx) ………………(15)                     
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 If we pick the even parity function, that is the cosine solution, we get 

from eqn 12, 

from ΨI (-a/2) = ΨII (-a/2), we have: 

Ee
-αa/2

 = Acos(ka/2) …………………………………………….(16) 

from ΨII (a/2)  =  ΨIII (a/2), we have :   

Acos(ka/2) = De
-αa/2 

.............................................................(17) 

Dividing 16 by 17  we have                                

 E = D      ……………………………………………….……...(18) 

Now let us apply eqn 13 at x = -a/2 and x = a/2.  

From (dΨI/dx)x= -a/2  =  (dΨII/dx)x= -a/2    , we have:  

αEe
-αa/2

 = Aksin(ka/2)  …………………………………….…...(19) 

From (dΨII/dx)x=a/2   =  (dΨIII/dx)x=a/2  , we have :  

Aksin(ka/2) = αDe
-αa/2

  …………………………………………(20) 

Dividing 20 by 19 we again get E = D. However, dividing eqn 20 by 

eqn 17, we get: 

                α = k tan(ka/2)    …………………...……………….(21)  

Recall that both k and α depend on energy E.  Hence eqn 21 is a 

transcendental equation.  

Similarly picking the sine solution in region II means A = 0 and E = -D. 

The corresponding transcendental equation is :   

        α = -k cot(ka/2)      …………………………….………….(22)      

1) These transcendental equations cannot be solved analytically, but by 

the graphical method of intersection of two different curves. 

Alternatively the two transcendental equations can be solved 
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numerically by iteration. Thus the continuity equation cannot be 

satisfied for any arbitrary value of E, but only a finite discrete set of 

values. The corresponding Eigen functions are the bound state 

solutions.  By contrast, the energy levels E that are possible if E >  Vo 

is continuous. 

2)  The potential well is not infinitely deep but finite, so the particles 

within it are not strictly confined but can now extend into the 

classically forbidden region I and III (Region where total energy is less 

than the potential energy) 

 

 

 
 

3) As the probability of finding the particle outside the well is finite, 

there is Quantum Tunneling of the particles from within the well to 

outside the well. 

4) The energies of the particle in infinite well are higher than the 

corresponding energy levels in finite well as shown in the figure below. 

(This can be roughly understood as the finite well problem has the 

effective width of the well higher than the infinite well, hence lower 

energies as per the formula  En = n
2
h

2
/8ma

2
 ) 
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  The concept of Quantum Tunneling as understood from the Square 

Well Potential helps us to understand the fields of radioactive decay of 

alpha particles, Scanning Tunneling Microscopy which is used to study 

surfaces  and  the binding of molecules, and Quantum Cascade Lasers.  
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Q.No Sample Questions CO 

1.  State De Broglie hypothesis. 1 

2. What is wave function? Give its physical significance 

and properties. 

1 

3. State Heisenberg’s uncertainty principle. By applying 

Heisenberg’s uncertainty principle, illustrate the 

broadening of spectral lines.   

1&2 

4. Using Heisenberg’s uncertainty principle explain the 

broadening of spectral lines. 

2 

5. What are Eigen functions? Mention their properties. 1 

6. Setup time independent one-dimensional Schrodinger’s 

wave equation for a matter wave. 

1 

7 Apply the time independent Schrodinger’s wave 

equation to find the solutions for a particle in an 

infinite potential well of width ‘a’. Hence obtain 

normalized wave function 

1&2 

8 Solve the Schrodinger’s wave equation for a free 

particle. 

1&2 

9 Point out the difference between particle in an infinite 

well for 1D and 3D  and arrive at the solution of the 

problem. 

2  

10.  Set up the differential equation for a particle in a 1D 

well of finite depth and arrive at the solutions inside 

and outside the well.   

2 

11. Explain the concept of tunneling by analyzing the 

solution of a particle in a finite well in 1 dimensions. 

2 

                  



Unit 2: Quantum Mechanics 

 

PNo. Problems CO 

1. Calculate the de Broglie wavelength associated with 

a proton moving with a velocity equal to (1/20)
th 

 of 

the velocity of light. 

To be found: de Broglie wavelength, λ 

Solution: 

34

14

27 8

6.625 10
2.64 10

1.67 10 (1/ 20) 3 10

h
m

mv









   

   
 

3 

2. An electron and a proton are accelerated through the 

same potential difference. Find the ratio of their de 

Broglie wavelengths. 

To be found: Ratio of de Broglie wavelength, λ 

Solution: 

De Broglie Wavelength, λ 

2

h

mE
   ,  

1

m
  

For electron, 
1

e

e
m

          For proton, 
1

p

p
m

   

Ratio of De Broglie Wavelengths, 
pe

p e

m

m




   

 

 

 

 

 

3 
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3. Compare the energy of a photon with that of a 

neutron when both are associated with wavelength of 

1A
o
. Given that the mass of neutron is 1.67 10

-27
kg. 

To be found: Comparison of energy of photon with 

that of neutron 

Solution: 

Energy of neutron,  

2 2 34 2

21

2 10 2 27

(6.625 10 )
13.1 10

2 2 2 (1 10 ) 1.67 10
n

P h
E J

m m





 


    

   

=0.082eV 

Energy of photon, 

34 8

16

10

6.625 10 3 10
19.89 10

1 10
p

hc
E J









  
   


=1242

1.9eV 

Ratio of  energies, 51.5148 10
p

n

E

E
   

 

 

 

 

 

 

 

 

 

3 
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4. An electron has a speed of 4.8 x 10
5 

m/s accurate to 

0.012 %. With what accuracy with which its position 

can be located. 

To be found: Uncertainty in position, Δx 

Solution: 

Uncertainty principle is given by,
4

h
x p


    

Uncertainty in speed, Δv = 4.8 x 10
5
 x 

0.012

100
= 

57.6m/s 

Uncertainty in 

position,

34

6

31

6.625 10
1 10

4 4 3.14 9.1 10 57.6

h
x m

m v








    

    
 

3 

5.  The inherent uncertainty in the measurement of time 

spent by Iridium-191 nuclei in the excited state is 

found to be 1.4x10
-10

 s. Estimate the uncertainty that 

results in its energy in the excited state. 

To be found: Uncertainty in energy, ΔE 

Solution: Uncertainty principle is given 

by,
4

h
E t


    

       

34

25

10

6.625 10
3.77 10

4 4 3.14 1.4 10

h
E J

t








    

   
 

 

3 
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6. The position and momentum of 1 keV electron are 

simultaneously determined and if its position is 

located within 1Å. What is the percentage of 

uncertainty in its momentum?      

To be found: Percentage of uncertainty in 

momentum of electron, Δp 

Solution: 

 Uncertainty principle is given by,
4

h
x p


    

 Uncertainty in momentum, 

34

24

10

6.625 10
0.53 10 . /

4 4 3.14 1 10

h
p kg m s

x








    

   
 

 Momentum, p = 

16 232 2 9.1 10 31 1 10 1.707 10 /mE kgm s        

 

 Percentage of uncertainty in momentum of 

electron, 100 3.1
p

p


   

 

 

 

 

 

 

 

 

3 
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7. Show that the energy Eigen value of a particle in 

second excited state is equal to 9 times the zero point 

energy. 

To be found: Energy Eigen value for second excited 

state is equal to 9 times the zero point energy. 

Solution: Energy Eigen value equation is given 

by,
2 2

28

n h
E

ma
  

n=1, zero-point energy state, 
2

1 28

h
E

ma
  

n=3, second excited state, 
2

3 12

9
9

8

h
E E

ma
 

 

3 

8. An electron is bound in a one-dimensional potential 

well of width 1Å, but of infinite height. Find the 

energy value for the electron in the ground state.    

To be found: Energy Eigen value 

Solution:  

Energy Eigen value equation is given by, 
2 2

28

n h
E

ma
  

For n=1, ground state energy,

  

 

2
34

1 2
31 10

6.625 10
37.65

8 9.1 10 10
E eV



 


 

  

 

 

 

3 
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9. An electron is bound in one dimensional potential 

well of infinite potential of width 0.12 nm. Find the 

energy values in the ground state and also the first 

two exited state. 

To be found: Energy Eigen value 

Solution:  

Energy Eigen value equation is given by, 
2 2

28

n h
E

ma
  

For n=1, ground state energy, 

 

 

2
34

1 2
31 9

6.625 10
26.16

8 9.1 10 0.12 10
E eV



 


 

   

 

For n=2 and 3,first and second excited state,                                      

2 1
4 104.61E E eV 

   

 

3 1
9 235.44E E eV 

 
 

 

 

 

 

 

 

3 
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10. An electron is trapped in a potential well of a width 

0.5nm. If a transition takes place      from the first 

excited state to the ground state find the wavelength 

of the photon emitted. 

To be found: Wavelength of the photon emitted, λ 

Solution:  

For n=1, ground state energy, 

 

 

2
34

19

1 2
31 9

6.625 10
2.41 10 1.507

8 9.1 10 0.5 10
E J eV





 


   

   

 

For n=2,first excited state,     

   

19

2 1
4 9.64 10 6.025E E J eV   

  
Energy difference,                 

 

19

2 1
  –  7.23 10 4.518E E E J eV    

     
Wavelength of the photon emitted , 

34

1

8

9

6.625 10 3 1

7.

0
2

23 10
74.8

hc
nm

E J






  
  


  

                 

3 
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Things to think about! (CO3) 

1. Taking Planck’s law as the starting point derive Rayleigh –

Jeans law in the limit  of high λ. 

2. How can we naturally reconcile the dual Wave and Particle 

nature of matter ? 

3. Is there any connection between the position – momentum and 

energy-time uncertainty relationship? Discuss.  

4. Is the derivation for particle in a box done above valid for 

highly energetic relativistic particles ? Discuss.   

5. With respect to the particle in a box problem, find out what is 

tunneling. What is its utility in different engineering domains?  

  


